Exploring Multiple Pathways of Product Design Elements Using the fsQCA Method

计算机科学
作者
Yi Wang,Lijuan Sang,Weiwei Wang,Jian Chen,Jing Wang,Jing Wang,Zhiqiang Wen,Qizhao Peng
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (20): 9435-9435
标识
DOI:10.3390/app14209435
摘要

To address current product styling design issues, such as ignoring the joint effects of multiple styling elements when constructing perceptual imagery fitting models and thus failing to effectively identify the relationships between styling elements, a product styling design method based on fuzzy set qualitative comparative analysis (fsQCA) is proposed. This method first uses semantic differential and statistical methods to obtain users’ evaluative vocabulary for the product’s perceptual imagery. Then, morphological analysis and cluster analysis are employed to establish typical product samples and extract styling elements to create a styling feature library. Perceptual imagery ratings of these styling features are obtained through expert evaluation. fsQCA is then used to analyze the different grouping relationships between styling elements and their influence on product styling imagery, aiming to match user intentions through different element combination paths. The results show that this method achieves a consistency value of 0.9 for the most optimal styling configurations, demonstrating that fsQCA can effectively identify the multiple paths of product styling elements that meet users’ needs. The contributions of this study to the related fields are: (1) providing a new perspective on the relationship between user perceptual imagery and predicted product styling elements, and (2) advancing the theoretical basis for studying multiple paths of product styling elements. The research results demonstrate that using the fsQCA-based product styling design method can accurately portray the multiple paths of product styling elements that meet users’ needs, thereby effectively improving design efficiency. Finally, a teapot styling design study is used as an example to further verify the method’s feasibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Cc采纳,获得10
刚刚
苗广山发布了新的文献求助10
刚刚
CipherSage应助cc采纳,获得10
刚刚
rqy完成签到,获得积分10
1秒前
朴素完成签到,获得积分10
1秒前
1秒前
Esther发布了新的文献求助10
1秒前
看双双完成签到,获得积分10
1秒前
xin33完成签到,获得积分10
1秒前
Mango完成签到,获得积分10
1秒前
鹿友绿发布了新的文献求助10
1秒前
朴素的无招完成签到,获得积分10
2秒前
热心易绿完成签到 ,获得积分10
2秒前
安生完成签到 ,获得积分10
3秒前
隐形曼青应助朴素懿轩采纳,获得10
3秒前
xixi发布了新的文献求助10
3秒前
简单水蓉发布了新的文献求助10
4秒前
月落南山完成签到,获得积分10
4秒前
LuoYR@SZU发布了新的文献求助10
4秒前
fai完成签到,获得积分10
4秒前
研友_Y59785完成签到,获得积分10
5秒前
5秒前
甲乙丙丁发布了新的文献求助10
5秒前
停云完成签到,获得积分10
5秒前
5秒前
WAMK给WAMK的求助进行了留言
7秒前
害羞外套完成签到,获得积分10
7秒前
小二郎应助怕黑的擎采纳,获得10
7秒前
田様应助dery采纳,获得10
7秒前
7秒前
丘比特应助安静雨兰采纳,获得30
7秒前
wang发布了新的文献求助10
8秒前
劼大大完成签到,获得积分10
8秒前
8秒前
周游发布了新的文献求助10
8秒前
8秒前
墨瞳完成签到,获得积分10
10秒前
nana发布了新的文献求助10
10秒前
JamesPei应助槐序零玖采纳,获得10
10秒前
四非应助梦秋思采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3451182
求助须知:如何正确求助?哪些是违规求助? 3046720
关于积分的说明 9007559
捐赠科研通 2735491
什么是DOI,文献DOI怎么找? 1500328
科研通“疑难数据库(出版商)”最低求助积分说明 693546
邀请新用户注册赠送积分活动 691786