MAR-YOLOv9: A multi-dataset object detection method for agricultural fields based on YOLOv9

计算机科学 目标检测 增采样 人工智能 深度学习 骨干网 领域(数学) 特征(语言学) 机器学习 模式识别(心理学) 数据挖掘 电信 数学 语言学 哲学 纯数学 图像(数学)
作者
Dunlu Lu,Yangxu Wang
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0307643-e0307643
标识
DOI:10.1371/journal.pone.0307643
摘要

With the development of deep learning technology, object detection has been widely applied in various fields. However, in cross-dataset object detection, conventional deep learning models often face performance degradation issues. This is particularly true in the agricultural field, where there is a multitude of crop types and a complex and variable environment. Existing technologies still face performance bottlenecks when dealing with diverse scenarios. To address these issues, this study proposes a lightweight, cross-dataset enhanced object detection method for the agricultural domain based on YOLOv9, named Multi-Adapt Recognition-YOLOv9 (MAR-YOLOv9). The traditional 32x downsampling Backbone network has been optimized, and a 16x downsampling Backbone network has been innovatively designed. A more streamlined and lightweight Main Neck structure has been introduced, along with innovative methods for feature extraction, up-sampling, and Concat connection. The hybrid connection strategy allows the model to flexibly utilize features from different levels. This solves the issues of increased training time and redundant weights caused by the detection neck and auxiliary branch structures in traditional YOLOv9, enabling MAR-YOLOv9 to maintain high performance while reducing the model’s computational complexity and improving detection speed, making it more suitable for real-time detection tasks. In comparative experiments on four plant datasets, MAR-YOLOv9 improved the mAP@0.5 accuracy by 39.18% compared to seven mainstream object detection algorithms, and by 1.28% compared to the YOLOv9 model. At the same time, the model size was reduced by 9.3%, and the number of model layers was decreased, reducing computational costs and storage requirements. Additionally, MAR-YOLOv9 demonstrated significant advantages in detecting complex agricultural images, providing an efficient, lightweight, and adaptable solution for object detection tasks in the agricultural field. The curated data and code can be accessed at the following link: https://github.com/YangxuWangamI/MAR-YOLOv9 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于清绝完成签到 ,获得积分10
1秒前
及尔发布了新的文献求助10
1秒前
1秒前
木子李发布了新的文献求助10
1秒前
2秒前
Choi完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
星辰大海应助linhi采纳,获得10
5秒前
6秒前
脑洞疼应助王喂喂哦啊嗯采纳,获得10
6秒前
ghtsmile发布了新的文献求助10
6秒前
我是老大应助chself采纳,获得10
6秒前
stargazer完成签到,获得积分10
6秒前
cyx30303完成签到 ,获得积分10
7秒前
天天快乐应助徐瑶瑶采纳,获得10
7秒前
WT发布了新的文献求助30
7秒前
8秒前
轻松雪旋发布了新的文献求助10
8秒前
尽平梅愿发布了新的文献求助10
9秒前
9秒前
富兰克林发布了新的文献求助10
9秒前
Dong发布了新的文献求助10
10秒前
黑宝坨发布了新的文献求助10
10秒前
10秒前
tuanheqi应助栗子的小母牛采纳,获得50
11秒前
11秒前
孝顺的落雁完成签到,获得积分10
12秒前
12秒前
顾矜应助罗向南采纳,获得10
13秒前
刻苦的淇发布了新的文献求助10
13秒前
毕业biye发布了新的文献求助10
14秒前
nuo发布了新的文献求助10
14秒前
少熬夜发布了新的文献求助10
15秒前
宇文青寒完成签到,获得积分10
15秒前
Hubert发布了新的文献求助10
15秒前
及尔完成签到,获得积分10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310576
求助须知:如何正确求助?哪些是违规求助? 2943398
关于积分的说明 8514677
捐赠科研通 2618712
什么是DOI,文献DOI怎么找? 1431344
科研通“疑难数据库(出版商)”最低求助积分说明 664461
邀请新用户注册赠送积分活动 649626