系列(地层学)
时间序列
计算机科学
计量经济学
工业工程
数学
工程类
机器学习
地质学
古生物学
作者
Shengsheng Lin,Weiwei Lin,Xinyi Hu,Wentai Wu,Ruichao Mo,Hao Zhong
出处
期刊:Cornell University - arXiv
日期:2024-09-27
标识
DOI:10.48550/arxiv.2409.18479
摘要
The stable periodic patterns present in time series data serve as the foundation for conducting long-horizon forecasts. In this paper, we pioneer the exploration of explicitly modeling this periodicity to enhance the performance of models in long-term time series forecasting (LTSF) tasks. Specifically, we introduce the Residual Cycle Forecasting (RCF) technique, which utilizes learnable recurrent cycles to model the inherent periodic patterns within sequences, and then performs predictions on the residual components of the modeled cycles. Combining RCF with a Linear layer or a shallow MLP forms the simple yet powerful method proposed in this paper, called CycleNet. CycleNet achieves state-of-the-art prediction accuracy in multiple domains including electricity, weather, and energy, while offering significant efficiency advantages by reducing over 90% of the required parameter quantity. Furthermore, as a novel plug-and-play technique, the RCF can also significantly improve the prediction accuracy of existing models, including PatchTST and iTransformer. The source code is available at: https://github.com/ACAT-SCUT/CycleNet.
科研通智能强力驱动
Strongly Powered by AbleSci AI