Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:9
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyg1994发布了新的文献求助10
2秒前
3秒前
3秒前
领导范儿应助形随将至采纳,获得10
4秒前
5秒前
水心完成签到 ,获得积分10
6秒前
7秒前
许思真完成签到,获得积分10
7秒前
谦谦神棍发布了新的文献求助10
9秒前
药学小团子完成签到 ,获得积分10
10秒前
leehong发布了新的文献求助10
10秒前
asdlxz发布了新的文献求助10
11秒前
Joshua完成签到,获得积分0
12秒前
土土完成签到,获得积分10
12秒前
by完成签到,获得积分10
12秒前
鲤角兽发布了新的文献求助10
13秒前
wanci应助hope采纳,获得10
14秒前
15秒前
16秒前
形随将至发布了新的文献求助10
21秒前
善学以致用应助wdy337采纳,获得10
23秒前
zzz完成签到 ,获得积分10
23秒前
完美世界应助鲤角兽采纳,获得10
25秒前
leehong完成签到,获得积分20
25秒前
直率的宛海完成签到,获得积分10
26秒前
asdlxz完成签到,获得积分20
26秒前
翻斗花园爆破手小胡完成签到,获得积分10
28秒前
Zu发布了新的文献求助10
29秒前
30秒前
受伤的严青完成签到 ,获得积分10
31秒前
32秒前
橙子完成签到 ,获得积分10
32秒前
34秒前
Bacon发布了新的文献求助10
35秒前
36秒前
小蘑菇应助Zu采纳,获得10
37秒前
TT发布了新的文献求助10
38秒前
茂飞发布了新的文献求助10
38秒前
轻松的语海完成签到,获得积分10
39秒前
hilm应助羽化成环采纳,获得10
39秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457592
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292461
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458659
邀请新用户注册赠送积分活动 1448644
关于科研通互助平台的介绍 1424323