Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5456-5467 被引量:12
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hebilie完成签到,获得积分10
1秒前
1秒前
1秒前
打打应助阔达尔白采纳,获得10
2秒前
彪壮的小五发布了新的文献求助200
2秒前
情怀应助可耐的不平采纳,获得10
2秒前
TNU发布了新的文献求助10
2秒前
潇潇发布了新的文献求助10
2秒前
2秒前
无语的安卉发布了新的文献求助150
2秒前
无极微光应助Wang采纳,获得20
2秒前
2秒前
无极微光应助派大星采纳,获得20
2秒前
优雅的从安关注了科研通微信公众号
2秒前
3秒前
3秒前
王77发布了新的文献求助10
3秒前
4秒前
5秒前
小天才关注了科研通微信公众号
5秒前
Garrett完成签到 ,获得积分10
6秒前
三山发布了新的文献求助10
6秒前
adobe发布了新的文献求助10
6秒前
陈咩咩发布了新的文献求助10
6秒前
贪玩飞珍发布了新的文献求助10
7秒前
典雅的俊驰应助huzefeng采纳,获得30
7秒前
8秒前
JIE发布了新的文献求助10
8秒前
8秒前
烟花应助兮豫采纳,获得10
8秒前
Judy完成签到,获得积分10
8秒前
8秒前
Akim应助一个饼采纳,获得10
8秒前
胡江发布了新的文献求助10
9秒前
pluto应助郑成灿采纳,获得10
9秒前
9秒前
Myownway发布了新的文献求助10
9秒前
9秒前
清爽的山灵完成签到,获得积分10
9秒前
alano发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526436
求助须知:如何正确求助?哪些是违规求助? 4616609
关于积分的说明 14554414
捐赠科研通 4554801
什么是DOI,文献DOI怎么找? 2496073
邀请新用户注册赠送积分活动 1476438
关于科研通互助平台的介绍 1448035