Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasmine发布了新的文献求助10
刚刚
哒哒哒发布了新的文献求助10
1秒前
lvlei发布了新的文献求助10
2秒前
erhan7完成签到,获得积分10
3秒前
3秒前
自然千凝完成签到,获得积分10
3秒前
4秒前
6秒前
Bella完成签到,获得积分10
6秒前
6秒前
寒冷的踏歌完成签到 ,获得积分10
6秒前
和平使命应助felix采纳,获得10
7秒前
852发布了新的文献求助10
7秒前
Wang发布了新的文献求助10
8秒前
科研通AI2S应助Hanniewei采纳,获得10
8秒前
8秒前
9秒前
旦旦完成签到 ,获得积分10
10秒前
Stitch应助水牛采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
13秒前
大模型应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
于芋菊应助科研通管家采纳,获得200
13秒前
华仔应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
ynuxb完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
neuarcher应助科研通管家采纳,获得20
14秒前
情怀应助科研通管家采纳,获得30
14秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140881
求助须知:如何正确求助?哪些是违规求助? 2791855
关于积分的说明 7800523
捐赠科研通 2448091
什么是DOI,文献DOI怎么找? 1302393
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601210