亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马良发布了新的文献求助10
1秒前
平淡的雁桃完成签到,获得积分10
5秒前
6秒前
10秒前
科研通AI5应助SarahG采纳,获得30
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
1分钟前
周同学发布了新的文献求助10
1分钟前
1分钟前
P_Chem完成签到,获得积分10
1分钟前
周同学发布了新的文献求助10
2分钟前
2分钟前
wenbo完成签到,获得积分0
2分钟前
Mercury完成签到,获得积分10
2分钟前
SarahG发布了新的文献求助30
2分钟前
SarahG完成签到,获得积分10
2分钟前
老石完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
周同学完成签到,获得积分20
3分钟前
千里草完成签到,获得积分10
3分钟前
周同学关注了科研通微信公众号
4分钟前
4分钟前
tenta发布了新的文献求助200
5分钟前
赘婿应助feifeiaym采纳,获得20
5分钟前
乐正亦寒完成签到 ,获得积分10
5分钟前
无情迎蕾完成签到,获得积分10
6分钟前
6分钟前
结实初柳完成签到,获得积分10
6分钟前
tenta完成签到,获得积分10
6分钟前
feifeiaym发布了新的文献求助20
6分钟前
feifeiaym完成签到 ,获得积分10
7分钟前
tutu完成签到,获得积分10
7分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
李金文应助小坏蛋蛋蛋蛋采纳,获得10
8分钟前
英俊的铭应助jane123采纳,获得10
8分钟前
Hillson完成签到,获得积分10
8分钟前
Mark_He发布了新的文献求助10
8分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582250
求助须知:如何正确求助?哪些是违规求助? 4000012
关于积分的说明 12382029
捐赠科研通 3674909
什么是DOI,文献DOI怎么找? 2025436
邀请新用户注册赠送积分活动 1059193
科研通“疑难数据库(出版商)”最低求助积分说明 945843