Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:9
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助光亮的念珍采纳,获得30
刚刚
英吉利25发布了新的文献求助10
刚刚
南城忆潇湘完成签到,获得积分10
刚刚
2秒前
所所应助Irene采纳,获得10
2秒前
wuwu完成签到,获得积分10
4秒前
雾醉舟完成签到,获得积分10
4秒前
花生糕完成签到,获得积分10
5秒前
小白鸽完成签到,获得积分10
5秒前
机灵纸鹤完成签到 ,获得积分10
5秒前
lake完成签到,获得积分10
5秒前
Hello应助受伤的安雁采纳,获得30
5秒前
Evan123完成签到,获得积分10
6秒前
闫什应助Flz采纳,获得10
6秒前
6秒前
xiaorui完成签到,获得积分10
6秒前
尊敬的寄松完成签到 ,获得积分10
8秒前
9秒前
云深不知处完成签到,获得积分10
9秒前
老迟到的小松鼠完成签到,获得积分10
10秒前
勤恳镜子完成签到,获得积分10
11秒前
开心的若烟完成签到,获得积分10
12秒前
爱上多hi完成签到,获得积分10
12秒前
ll发布了新的文献求助10
15秒前
15秒前
笨笨梦寒关注了科研通微信公众号
15秒前
MM完成签到,获得积分10
16秒前
煲煲煲仔饭完成签到 ,获得积分10
16秒前
煲煲煲仔饭完成签到 ,获得积分10
16秒前
火羊宝完成签到 ,获得积分10
16秒前
455完成签到,获得积分10
18秒前
cis2014完成签到,获得积分10
18秒前
嘻嘻完成签到,获得积分10
19秒前
athena完成签到,获得积分10
19秒前
十七完成签到 ,获得积分10
20秒前
Zz完成签到,获得积分10
20秒前
清淮完成签到 ,获得积分10
20秒前
小新小新发布了新的文献求助10
21秒前
amault完成签到,获得积分10
22秒前
马小燕完成签到,获得积分10
22秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695