Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5456-5467 被引量:12
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
太阳发布了新的文献求助10
1秒前
彭于晏应助Yidie采纳,获得10
2秒前
2秒前
曾舒欣发布了新的文献求助30
2秒前
3秒前
有个公子她姓李完成签到,获得积分10
3秒前
优秀关注了科研通微信公众号
3秒前
蝈蝈完成签到,获得积分10
3秒前
sqz_df完成签到,获得积分10
4秒前
4秒前
fan完成签到 ,获得积分10
4秒前
微笑襄完成签到 ,获得积分10
4秒前
5秒前
怕孤独的花瓣完成签到,获得积分10
5秒前
关关过应助Sea_U采纳,获得50
5秒前
芳芳子发布了新的文献求助10
6秒前
cheng发布了新的文献求助10
6秒前
数学情缘发布了新的文献求助10
7秒前
七塔蹦完成签到,获得积分10
8秒前
zmr完成签到,获得积分10
8秒前
明亮灭绝发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
LIUDEHUA发布了新的文献求助10
9秒前
慕青应助sqz_df采纳,获得10
10秒前
爱撒娇的大开完成签到 ,获得积分10
10秒前
耍酷橘子完成签到 ,获得积分10
10秒前
陈龙发布了新的文献求助10
11秒前
11秒前
lemon完成签到,获得积分0
12秒前
高高完成签到,获得积分10
12秒前
Owen应助芳芳子采纳,获得10
12秒前
彭于晏应助kongmeng采纳,获得10
12秒前
11完成签到,获得积分10
13秒前
树林发布了新的文献求助10
13秒前
完美世界应助WillGUO采纳,获得10
13秒前
YOLO12138应助LIUDEHUA采纳,获得10
13秒前
14秒前
华仔应助大导师采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709