已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
曾经如是完成签到,获得积分10
3秒前
jimmy完成签到,获得积分10
3秒前
5秒前
李梦如完成签到,获得积分20
5秒前
7秒前
舒适的一凤完成签到 ,获得积分10
7秒前
Orange应助何何何何何采纳,获得10
8秒前
8秒前
8秒前
希望天下0贩的0应助诺一44采纳,获得10
8秒前
8秒前
10秒前
jimmy发布了新的文献求助10
11秒前
陈梅红完成签到 ,获得积分10
12秒前
momo123完成签到 ,获得积分10
12秒前
13秒前
梨小7完成签到,获得积分10
14秒前
赘婿应助早晚炸了学校采纳,获得10
15秒前
15秒前
16秒前
张张完成签到,获得积分10
17秒前
Adzuki0812发布了新的文献求助30
18秒前
言论完成签到,获得积分10
20秒前
21秒前
22秒前
爱笑小笼包完成签到,获得积分10
22秒前
GaoChenxi完成签到 ,获得积分10
23秒前
李健的小迷弟应助张之静采纳,获得10
24秒前
FashionBoy应助吉他平方采纳,获得10
25秒前
25秒前
26秒前
CrazyLion完成签到,获得积分10
27秒前
科目三应助李梦如采纳,获得10
27秒前
米饭多加水完成签到,获得积分10
27秒前
28秒前
29秒前
nikki完成签到,获得积分10
30秒前
30秒前
小黄黄发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934509
求助须知:如何正确求助?哪些是违规求助? 4202404
关于积分的说明 13057258
捐赠科研通 3976729
什么是DOI,文献DOI怎么找? 2179167
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106744