Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:9
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zzz发布了新的文献求助10
2秒前
蒋杰应助OKYT采纳,获得10
2秒前
bkagyin应助hudaojiadecaigou采纳,获得10
3秒前
4秒前
风车车完成签到,获得积分10
4秒前
蛋堡发布了新的文献求助10
5秒前
研友_VZG7GZ应助淡然雁开采纳,获得10
5秒前
anansc发布了新的文献求助10
6秒前
victorzou完成签到,获得积分10
7秒前
打打应助福尔摩环采纳,获得10
7秒前
FashionBoy应助英勇羿采纳,获得10
8秒前
小马甲应助刻苦的煎蛋采纳,获得10
9秒前
李健的粉丝团团长应助Hw采纳,获得10
10秒前
甜瓜瓜发布了新的文献求助10
10秒前
乐乐应助森林木采纳,获得10
10秒前
小蘑菇应助逍遥鸭采纳,获得10
10秒前
10秒前
11秒前
缺水哥发布了新的文献求助10
11秒前
13完成签到,获得积分10
11秒前
6666发布了新的文献求助10
12秒前
风趣秋白完成签到,获得积分0
12秒前
12秒前
完美世界应助bean采纳,获得10
13秒前
14秒前
14秒前
lyqs215发布了新的文献求助10
15秒前
15秒前
16秒前
嘴角微微仰起笑应助小方采纳,获得10
16秒前
刻苦的煎蛋完成签到,获得积分10
16秒前
UU完成签到,获得积分10
16秒前
羞涩的孙应助聪明的宛菡采纳,获得10
17秒前
平行气流完成签到 ,获得积分10
17秒前
传统的怀薇完成签到 ,获得积分10
18秒前
18秒前
Hilda007应助暖羊羊Y采纳,获得10
18秒前
青青发布了新的文献求助10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350516
求助须知:如何正确求助?哪些是违规求助? 4483909
关于积分的说明 13957430
捐赠科研通 4383275
什么是DOI,文献DOI怎么找? 2408204
邀请新用户注册赠送积分活动 1400860
关于科研通互助平台的介绍 1374312