亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5456-5467 被引量:12
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左鞅完成签到 ,获得积分10
34秒前
哈哈发布了新的文献求助30
48秒前
wangyue发布了新的文献求助10
51秒前
辛涩发布了新的文献求助10
54秒前
林夕完成签到 ,获得积分10
1分钟前
1分钟前
wenky发布了新的文献求助10
1分钟前
和光同尘发布了新的文献求助10
1分钟前
山楂完成签到,获得积分10
1分钟前
Gydl完成签到,获得积分10
1分钟前
高高元柏完成签到,获得积分20
1分钟前
2分钟前
哈哈发布了新的文献求助10
2分钟前
125mmD91T完成签到,获得积分10
2分钟前
负者歌于途完成签到,获得积分10
2分钟前
哈哈我完成签到,获得积分10
2分钟前
3分钟前
wearelulu完成签到,获得积分10
3分钟前
Micheal完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
momo发布了新的文献求助30
3分钟前
4分钟前
何何发布了新的文献求助10
4分钟前
可爱的函函应助何何采纳,获得10
4分钟前
momo完成签到,获得积分10
4分钟前
Lan完成签到 ,获得积分10
4分钟前
Wei发布了新的文献求助10
4分钟前
4分钟前
哈哈发布了新的文献求助10
5分钟前
jinsijia应助科研通管家采纳,获得10
5分钟前
哈哈发布了新的文献求助10
5分钟前
计划完成签到,获得积分10
5分钟前
魔幻诗兰完成签到,获得积分10
6分钟前
NexusExplorer应助科研小贩采纳,获得10
6分钟前
6分钟前
科研小贩发布了新的文献求助10
6分钟前
热情依白应助可爱寻芹采纳,获得10
6分钟前
从来都不会放弃zr完成签到,获得积分0
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681609
求助须知:如何正确求助?哪些是违规求助? 5011314
关于积分的说明 15175896
捐赠科研通 4841184
什么是DOI,文献DOI怎么找? 2594973
邀请新用户注册赠送积分活动 1547960
关于科研通互助平台的介绍 1505990