Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5456-5467 被引量:12
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大力惜海采纳,获得10
刚刚
shuide完成签到,获得积分20
1秒前
1秒前
ghkjl发布了新的文献求助10
2秒前
葡萄完成签到 ,获得积分10
2秒前
LH发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
東東发布了新的文献求助10
3秒前
3秒前
花椒香菜发布了新的文献求助10
4秒前
朴素的寒天完成签到,获得积分20
4秒前
wuyany33完成签到,获得积分10
4秒前
Liliz完成签到,获得积分10
4秒前
Zilong864完成签到,获得积分10
4秒前
CC发布了新的文献求助10
5秒前
5秒前
6秒前
华仔应助陆仓颉采纳,获得10
6秒前
米大王完成签到,获得积分10
6秒前
笑点低的白昼完成签到,获得积分10
6秒前
7秒前
rrtiamo发布了新的文献求助10
7秒前
六神曲完成签到,获得积分10
7秒前
南橘完成签到,获得积分10
7秒前
7秒前
8秒前
qq158014169发布了新的文献求助10
8秒前
田雪完成签到,获得积分10
8秒前
Owen应助liwenhao采纳,获得10
8秒前
彭于晏应助小林要发sci采纳,获得10
9秒前
chen发布了新的文献求助10
9秒前
9秒前
Ryan123完成签到,获得积分10
9秒前
10秒前
whisper发布了新的文献求助10
10秒前
zyyyyyyyy完成签到,获得积分10
10秒前
yx完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676