Boundary-aware Prototype in Semi-supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦的尔阳完成签到,获得积分10
刚刚
刚刚
现实的白开水完成签到,获得积分10
刚刚
刚刚
SHDeathlock发布了新的文献求助50
刚刚
lunan发布了新的文献求助10
1秒前
1秒前
酷炫过客完成签到,获得积分20
1秒前
2秒前
3秒前
3秒前
华仔应助xiaoziyi666采纳,获得10
3秒前
渝州人完成签到,获得积分10
3秒前
3秒前
hanna发布了新的文献求助10
3秒前
科研通AI2S应助neil采纳,获得10
4秒前
大模型应助天真思雁采纳,获得10
4秒前
酷炫过客发布了新的文献求助10
4秒前
4秒前
深情凡灵发布了新的文献求助10
5秒前
马保国123发布了新的文献求助10
5秒前
胡须完成签到,获得积分10
6秒前
jjgod发布了新的文献求助10
6秒前
muomuo发布了新的文献求助10
7秒前
湘华完成签到,获得积分10
7秒前
渝州人发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
开放鸵鸟发布了新的文献求助10
9秒前
9秒前
温暖以蓝完成签到,获得积分20
9秒前
WTF完成签到,获得积分10
10秒前
花花花花完成签到,获得积分10
10秒前
franklvlei发布了新的文献求助10
11秒前
丘比特应助湘华采纳,获得10
12秒前
12秒前
AIA7完成签到,获得积分10
12秒前
towerman完成签到,获得积分10
13秒前
花花花花发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762