Boundary-Aware Prototype in Semi-Supervised Medical Image Segmentation

图像分割 计算机科学 人工智能 计算机视觉 图像处理 分割 尺度空间分割 边界(拓扑) 图像(数学) 模式识别(心理学) 数学 数学分析
作者
Y. Wang,Bin Xiao,Xiuli Bi,Weisheng Li,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 5456-5467 被引量:12
标识
DOI:10.1109/tip.2024.3463412
摘要

The true label plays an important role in semi-supervised medical image segmentation (SSMIS) because it can provide the most accurate supervision information when the label is limited. The popular SSMIS method trains labeled and unlabeled data separately, and the unlabeled data cannot be directly supervised by the true label. This limits the contribution of labels to model training. Is there an interactive mechanism that can break the separation between two types of data training to maximize the utilization of true labels? Inspired by this, we propose a novel consistency learning framework based on the non-parametric distance metric of boundary-aware prototypes to alleviate this problem. This method combines CNN-based linear classification and nearest neighbor-based non-parametric classification into one framework, encouraging the two segmentation paradigms to have similar predictions for the same input. More importantly, the prototype can be clustered from both labeled and unlabeled data features so that it can be seen as a bridge for interactive training between labeled and unlabeled data. When the prototype-based prediction is supervised by the true label, the supervisory signal can simultaneously affect the feature extraction process of both data. In addition, boundary-aware prototypes can explicitly model the differences in boundaries and centers of adjacent categories, so pixel-prototype contrastive learning is introduced to further improve the discriminability of features and make them more suitable for non-parametric distance measurement. Experiments show that although our method uses a modified lightweight UNet as the backbone, it outperforms the comparison method using a 3D VNet with more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助qingxuan采纳,获得10
刚刚
刚刚
科研通AI2S应助云山枫叶采纳,获得10
1秒前
egg发布了新的文献求助10
1秒前
1秒前
1秒前
zbclzf完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
空白格完成签到 ,获得积分10
2秒前
3秒前
3秒前
萂昕完成签到 ,获得积分10
3秒前
lw完成签到,获得积分10
4秒前
小九九发布了新的文献求助10
4秒前
阴香萍发布了新的文献求助10
4秒前
jade完成签到,获得积分10
4秒前
天天向上完成签到,获得积分10
4秒前
5秒前
Qiao发布了新的文献求助10
5秒前
SPULY完成签到,获得积分10
6秒前
徐磊完成签到,获得积分10
6秒前
6秒前
蓝胖子发布了新的文献求助10
6秒前
zhabgyyy完成签到,获得积分10
6秒前
CipherSage应助沉默的半凡采纳,获得10
7秒前
maodoujie发布了新的文献求助10
7秒前
直率书包发布了新的文献求助10
7秒前
帅气忆南发布了新的文献求助10
7秒前
几木完成签到,获得积分10
7秒前
rongrongchen发布了新的文献求助10
7秒前
8秒前
8秒前
风筝与亭完成签到 ,获得积分10
8秒前
科研通AI6应助欧阳振采纳,获得30
9秒前
高兴山兰发布了新的文献求助20
9秒前
9秒前
隐龙居士完成签到,获得积分10
9秒前
慈祥的惜梦应助周物采纳,获得30
10秒前
青青完成签到,获得积分10
10秒前
egg完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652526
求助须知:如何正确求助?哪些是违规求助? 4787640
关于积分的说明 15060403
捐赠科研通 4811049
什么是DOI,文献DOI怎么找? 2573602
邀请新用户注册赠送积分活动 1529411
关于科研通互助平台的介绍 1488273