Multimodal Distillation Pre-Training Model for Ultrasound Dynamic Images Annotation

计算机科学 人工智能 编码器 特征提取 注释 计算机视觉 特征(语言学) 医学影像学 语义学(计算机科学) 模式识别(心理学) 自然语言处理 机器学习 语言学 操作系统 哲学 程序设计语言
作者
Xiaojun Chen,Ke Jia,Yaning Zhang,Jianping Gou,Anna Shen,Shaohua Wan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (5): 3124-3136 被引量:5
标识
DOI:10.1109/jbhi.2024.3438254
摘要

With the development of medical technology, ultrasonography has become an important diagnostic method in doctors' clinical work. However, compared with the static medical image processing work such as CT, MRI, etc., which has more research bases, ultrasonography is a dynamic medical image similar to video, which is captured and generated by a real-time moving probe, so how to deal with the video data in the medical field and cross modal extraction of the textual semantics in the medical video is a difficult problem that needs to be researched. For this reason, this paper proposes a pre-training model of multimodal distillation and fusion coding for processing the semantic relationship between ultrasound dynamic Images and text. Firstly, by designing the fusion encoder, the visual geometric features of tissues and organs in ultrasound dynamic images, the overall visual appearance descriptive features and the named entity linguistic features are fused to form a unified visual-linguistic feature, so that the model obtains richer visual, linguistic cues aggregation and alignment ability. Then, the pre-training model is augmented by multimodal knowledge distillation to improve the learning ability of the model. The final experimental results on multiple datasets show that the multimodal distillation pre-training model generally improves the fusion ability of various types of features in ultrasound dynamic images, and realizes the automated and accurate annotation of ultrasound dynamic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助summer采纳,获得10
刚刚
刚刚
杨师傅完成签到 ,获得积分10
1秒前
惊涛骇浪发布了新的文献求助10
1秒前
苹果蜗牛完成签到 ,获得积分10
3秒前
啊o完成签到 ,获得积分10
3秒前
我吃柠檬发布了新的文献求助10
3秒前
小蘑菇应助甘乐采纳,获得10
3秒前
yy完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
蔡龙杰完成签到,获得积分10
4秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
5秒前
YARA发布了新的文献求助10
5秒前
啾比文完成签到,获得积分10
5秒前
6秒前
green给green的求助进行了留言
7秒前
艾因兹怀斯完成签到,获得积分10
8秒前
黄院士发布了新的文献求助10
8秒前
9秒前
9秒前
田田完成签到 ,获得积分10
9秒前
June发布了新的文献求助30
9秒前
yjn完成签到,获得积分10
10秒前
Zhlili发布了新的文献求助20
10秒前
活泼忆丹完成签到,获得积分10
10秒前
11秒前
11秒前
玛卡发布了新的文献求助10
11秒前
12秒前
李伟完成签到,获得积分10
13秒前
jias发布了新的文献求助10
13秒前
李松林发布了新的文献求助10
14秒前
淡然的萝应助a3979107采纳,获得10
14秒前
李松林发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584104
求助须知:如何正确求助?哪些是违规求助? 4667626
关于积分的说明 14768874
捐赠科研通 4610007
什么是DOI,文献DOI怎么找? 2529583
邀请新用户注册赠送积分活动 1498629
关于科研通互助平台的介绍 1467267