Multimodal Distillation Pre-training Model for Ultrasound Dynamic Images Annotation

计算机科学 人工智能 编码器 特征提取 注释 计算机视觉 特征(语言学) 医学影像学 语义学(计算机科学) 模式识别(心理学) 自然语言处理 机器学习 哲学 语言学 程序设计语言 操作系统
作者
Xiaojun Chen,Ke Jia,Yaning Zhang,Jianping Gou,Anna Shen,Shaohua Wan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3438254
摘要

With the development of medical technology, ultrasonography has become an important diagnostic method in doctors' clinical work. However, compared with the static medical image processing work such as CT, MRI, etc., which has more research bases, ultrasonography is a dynamic medical image similar to video, which is captured and generated by a real-time moving probe, so how to deal with the video data in the medical field and cross modal extraction of the textual semantics in the medical video is a difficult problem that needs to be researched. For this reason, this paper proposes a pre-training model of multimodal distillation and fusion coding for processing the semantic relationship between ultrasound dynamic Images and text. Firstly, by designing the fusion encoder, the visual geometric features of tissues and organs in ultrasound dynamic images, the overall visual appearance descriptive features and the named entity linguistic features are fused to form a unified visual-linguistic feature, so that the model obtains richer visual, linguistic cues aggregation and alignment ability. Then, the pre-training model is augmented by multimodal knowledge distillation to improve the learning ability of the model. The final experimental results on multiple datasets show that the multimodal distillation pre-training model generally improves the fusion ability of various types of features in ultrasound dynamic images, and realizes the automated and accurate annotation of ultrasound dynamic images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dq1992发布了新的文献求助10
1秒前
1秒前
2秒前
book发布了新的文献求助10
2秒前
4秒前
cctv18应助Lee采纳,获得30
4秒前
pazlye完成签到,获得积分20
4秒前
白桦林泪完成签到,获得积分10
5秒前
5秒前
614614发布了新的文献求助30
5秒前
dingjianqiang发布了新的文献求助10
6秒前
6秒前
健壮冬卉发布了新的文献求助10
6秒前
Ganlou应助Steven采纳,获得10
7秒前
dddsss发布了新的文献求助10
7秒前
白桦林泪发布了新的文献求助10
8秒前
9秒前
9秒前
goodfish完成签到,获得积分10
10秒前
我是老大应助yiyu采纳,获得10
10秒前
11秒前
共享精神应助贰拾贰采纳,获得30
11秒前
Jolin发布了新的文献求助10
11秒前
zhangyu关注了科研通微信公众号
12秒前
12秒前
康康乃馨完成签到 ,获得积分10
13秒前
Zhaott完成签到,获得积分10
13秒前
13秒前
cctv18应助张啦啦采纳,获得10
14秒前
14秒前
龙叄完成签到,获得积分10
14秒前
调研昵称发布了新的文献求助30
15秒前
cctv18应助dingjianqiang采纳,获得10
16秒前
17秒前
在水一方应助dq1992采纳,获得10
17秒前
胡明月发布了新的文献求助10
18秒前
文艺寄灵发布了新的文献求助10
18秒前
情怀应助Joker采纳,获得10
21秒前
Always完成签到,获得积分10
21秒前
早间无期完成签到,获得积分10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322299
求助须知:如何正确求助?哪些是违规求助? 2953627
关于积分的说明 8566161
捐赠科研通 2631159
什么是DOI,文献DOI怎么找? 1439668
科研通“疑难数据库(出版商)”最低求助积分说明 667171
邀请新用户注册赠送积分活动 653612