加权
融合
聚类分析
人工智能
计算机科学
计算机视觉
模式识别(心理学)
地质学
物理
哲学
语言学
声学
作者
Yi Zhang,Fengyu Tian,Chuan Ma,Miaomiao Li,Hengfu Yang,Zhe Liu,En Zhu,Xinwang Liu
出处
期刊:IEEE transactions on neural networks and learning systems
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2024.3434968
摘要
Multiview clustering has become a prominent research topic in data analysis, with wide-ranging applications across various fields. However, the existing late fusion multiview clustering (LFMVC) methods still exhibit some limitations, including variable importance and contributions and a heightened sensitivity to noise and outliers during the alignment process. To tackle these challenges, we propose a novel regularized instance weighting multiview clustering via late fusion alignment (R-IWLF-MVC), which considers the instance importance from various views, enabling information integration to be more effective. Specifically, we assign each sample an importance attribute to enable the learning process to focus more on the key sample nodes and avoid being influenced by noise or outliers, while laying the groundwork for the fusion of different views. In addition, we continue to employ late fusion alignment to integrate base clustering from various views and introduce a new regularization term with prior knowledge to ensure that the learning process does not deviate too much from the expected results. After that, we design a three-step alternating optimization strategy with proven convergence for the resultant problem. Our proposed approach has been extensively evaluated on multiple real-world datasets, demonstrating its superiority to state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI