Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst

化学 电催化剂 不稳定性 钙钛矿(结构) 格子(音乐) 结晶学 化学物理 物理化学 电化学 电极 量子力学 物理 声学
作者
Jan Bosse,Jian Gu,Jaewon Choi,Vladimir Roddatis,Yong‐Bin Zhuang,Nagaarjhuna A. Kani,Anna Hartl,Mirian García‐Fernández,Ke‐Jin Zhou,Alessandro Nicolaou,Thomas Lippert,Jun Cheng,Andrew R. Akbashev
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (34): 23989-23997 被引量:3
标识
DOI:10.1021/jacs.4c07233
摘要

Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
犹豫丹彤发布了新的文献求助10
2秒前
long发布了新的文献求助10
2秒前
3秒前
辉hui发布了新的文献求助10
3秒前
柏小霜完成签到,获得积分10
3秒前
xun发布了新的文献求助10
4秒前
4秒前
joshua给joshua的求助进行了留言
6秒前
柏小霜发布了新的文献求助10
6秒前
苹果帆布鞋完成签到,获得积分10
6秒前
夏夜发布了新的文献求助10
7秒前
咸鱼发布了新的文献求助10
7秒前
赘婿应助认真的海豚采纳,获得10
8秒前
9秒前
9秒前
叶开发布了新的文献求助10
9秒前
10秒前
小蘑菇应助一路向北采纳,获得10
11秒前
天天快乐应助coffee采纳,获得10
11秒前
HH完成签到,获得积分10
12秒前
嘎嘎楽发布了新的文献求助10
13秒前
姜彦乔发布了新的文献求助30
13秒前
RC_Wang发布了新的文献求助200
15秒前
足球发布了新的文献求助10
15秒前
16秒前
小机灵鬼完成签到,获得积分10
16秒前
佚名发布了新的文献求助10
18秒前
18秒前
JamesPei应助嘎嘎楽采纳,获得10
20秒前
英俊的铭应助GHOMON采纳,获得10
21秒前
小机灵鬼发布了新的文献求助10
21秒前
足球完成签到,获得积分10
22秒前
23秒前
可爱的函函应助IceZong采纳,获得10
23秒前
26秒前
无花果应助夏夜采纳,获得10
26秒前
niy6tyg发布了新的文献求助10
26秒前
范范完成签到,获得积分10
27秒前
JamesPei应助冷静的三问采纳,获得30
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488999
求助须知:如何正确求助?哪些是违规求助? 3076463
关于积分的说明 9145401
捐赠科研通 2768731
什么是DOI,文献DOI怎么找? 1519357
邀请新用户注册赠送积分活动 703805
科研通“疑难数据库(出版商)”最低求助积分说明 702009