Molecular O2 Dimers and Lattice Instability in a Perovskite Electrocatalyst

化学 电催化剂 不稳定性 钙钛矿(结构) 格子(音乐) 结晶学 化学物理 物理化学 电化学 电极 量子力学 物理 声学
作者
Jan Bosse,Jian Gu,Jaewon Choi,Vladimir Roddatis,Yong‐Bin Zhuang,Nagaarjhuna A. Kani,Anna Hartl,Mirian García‐Fernández,Ke‐Jin Zhou,Alessandro Nicolaou,Thomas Lippert,Jun Cheng,Andrew R. Akbashev
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (34): 23989-23997 被引量:3
标识
DOI:10.1021/jacs.4c07233
摘要

Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3–x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3–x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈元元K完成签到,获得积分10
1秒前
Jack发布了新的文献求助10
1秒前
HJ发布了新的文献求助10
1秒前
feng_ding完成签到,获得积分10
1秒前
大神装发布了新的文献求助10
1秒前
1秒前
tttt9999完成签到,获得积分10
1秒前
汐颜紫雨应助陈子川采纳,获得10
2秒前
传奇3应助亦玉采纳,获得10
2秒前
2秒前
欢呼的盼烟完成签到 ,获得积分10
3秒前
3秒前
斯文败类应助老晨采纳,获得10
4秒前
Akim应助FG采纳,获得10
4秒前
ningzi发布了新的文献求助20
4秒前
5秒前
开心太英完成签到,获得积分10
5秒前
乐乐应助白雅颂采纳,获得10
5秒前
英姑应助忐忑的黑猫采纳,获得10
5秒前
6秒前
狂野世立发布了新的文献求助10
6秒前
6秒前
优雅的书瑶完成签到 ,获得积分10
7秒前
干净映阳完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助可靠的寒风采纳,获得10
7秒前
7秒前
xuduo发布了新的文献求助30
7秒前
sunset发布了新的文献求助10
7秒前
古灵井盖完成签到,获得积分10
8秒前
8秒前
星辰大海应助张凤采纳,获得10
9秒前
科研通AI6应助西地兰卡采纳,获得10
9秒前
雅柏菲卡完成签到,获得积分10
9秒前
Zx_1993应助柚子采纳,获得10
9秒前
9秒前
一一一完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
小蘑菇应助生动曼冬采纳,获得10
10秒前
田様应助生动曼冬采纳,获得10
10秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239324
求助须知:如何正确求助?哪些是违规求助? 4406796
关于积分的说明 13715790
捐赠科研通 4275188
什么是DOI,文献DOI怎么找? 2345948
邀请新用户注册赠送积分活动 1343082
关于科研通互助平台的介绍 1301035