秀丽隐杆线虫
氧化应激
长寿
黑腹果蝇
细胞生物学
效应器
转录因子
基因敲除
生物
线粒体
基因
衰老
遗传学
细胞应激反应
模式生物
生物化学
战斗或逃跑反应
作者
Jiangbo Song,Zhiquan Li,Lei Zhou,Xin Chen,Wei Qi Guinevere Sew,Héctor Herranz,Zilu Ye,Jesper V. Olsen,Yuan Li,Marianne Nygaard,Kaare Christensen,Xiaoling Tong,Vilhelm A. Bohr,Lene Juel Rasmussen,Fangyin Dai
标识
DOI:10.1038/s41467-024-51542-z
摘要
FOXO transcription factors modulate aging-related pathways and influence longevity in multiple species, but the transcriptional targets that mediate these effects remain largely unknown. Here, we identify an evolutionarily conserved FOXO target gene, Oxidative stress-responsive serine-rich protein 1 (OSER1), whose overexpression extends lifespan in silkworms, nematodes, and flies, while its depletion correspondingly shortens lifespan. In flies, overexpression of OSER1 increases resistance to oxidative stress, starvation, and heat shock, while OSER1-depleted flies are more vulnerable to these stressors. In silkworms, hydrogen peroxide both induces and is scavenged by OSER1 in vitro and in vivo. Knockdown of OSER1 in Caenorhabditis elegans leads to increased ROS production and shorter lifespan, mitochondrial fragmentation, decreased ATP production, and altered transcription of mitochondrial genes. Human proteomic analysis suggests that OSER1 plays roles in oxidative stress response, cellular senescence, and reproduction, which is consistent with the data and suggests that OSER1 could play a role in fertility in silkworms and nematodes. Human studies demonstrate that polymorphic variants in OSER1 are associated with human longevity. In summary, OSER1 is an evolutionarily conserved FOXO-regulated protein that improves resistance to oxidative stress, maintains mitochondrial functional integrity, and increases lifespan in multiple species. Additional studies will clarify the role of OSER1 as a critical effector of healthy aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI