法拉第效率
质子化
离解(化学)
催化作用
电化学
电解水
可逆氢电极
无机化学
电解
氢
一氧化碳
法拉第电流
电催化剂
材料科学
化学
二氧化碳电化学还原
分解水
标准氢电极
金属
电极
制氢
光化学
电化学电位
作者
Qi Tang,Qi Hao,Junxiu Wu,Yaowen Zhang,Ping Sun,Depeng Wang,Chuan Tian,Haixia Zhong,Yihan Zhu,Keke Huang,Kai Liu,Xinbo Zhang,Jun Lü
标识
DOI:10.1002/aenm.202401364
摘要
Abstract Atomic Fe sites enabled electrochemical carbon dioxide (CO 2 ) reduction (ECO 2 R) to carbon monoxide (CO) at low overpotentials. However, the narrow potential ranges for selective CO 2 conversion on atomic Fe sites hindered the CO production at high current densities. Therefore, unveiling the CO 2 electroreduction processes and clarifying the catalytic mechanisms on different atomic Fe sites are important for better design of atomic Fe catalysts toward efficient ECO 2 R. Herein, the ECO 2 R processes on single‐atom, dual‐atom, and cluster Fe sites are systematically investigated, and clarify that the balanced water dissociation and CO 2 protonation on dual‐atom Fe sites promote the efficient CO production. The dual‐atom Fe catalyst achieves Faradaic efficiencies of CO ( FE CO ) above 92% over a wide potential range of −0.4–−0.9 V versus reversible hydrogen electrode and maintains FE CO of 91% after 153‐h electrolysis in H‐type cell. Benefitting from the favorable CO 2 protonation for ECO 2 R on dual‐atom Fe sites, pH‐universal CO 2 electroreduction is achieved in alkali‐/acid‐/bicarbonate‐fed membrane electrode assembly electrolyzer, with FE CO exceeds 98% in strongly acidic/alkaline and neutral mediums. The work reveals a water dissociation‐promoted CO 2 electroreduction on dual‐atom Fe sites and presents a feasible regulation of atomic Fe sites for highly active/selective ECO 2 R.
科研通智能强力驱动
Strongly Powered by AbleSci AI