Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study

胰岛素抵抗 机器学习 人工智能 计算机科学 人口 杠杆(统计) 医学 肥胖 内科学 环境卫生
作者
Álvaro Torres-Martos,Augusto Anguita‐Ruiz,Mireia Bustos-Aibar,Alberto Ramírez-Mena,M Arteaga,Gloria Bueno,Rosaura Leis,Concepción M. Aguilera,Rafael Alcalá,Jesús Alcalá‐Fdez
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:156: 102962-102962 被引量:1
标识
DOI:10.1016/j.artmed.2024.102962
摘要

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JiangHan发布了新的文献求助10
刚刚
2秒前
GGBOND发布了新的文献求助10
2秒前
3秒前
黄振全发布了新的文献求助10
3秒前
4秒前
Lu发布了新的文献求助10
5秒前
苯氮小羊发布了新的文献求助10
5秒前
hugdoggy发布了新的文献求助10
7秒前
7秒前
英姑应助shawn采纳,获得10
10秒前
完美世界应助22采纳,获得10
10秒前
Hululu完成签到,获得积分10
10秒前
11秒前
精美礼物发布了新的文献求助30
12秒前
anna发布了新的文献求助10
12秒前
GGBOND发布了新的文献求助10
17秒前
pomfret完成签到,获得积分10
17秒前
从容甜瓜完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
21秒前
桐桐应助Lu采纳,获得10
22秒前
YWang发布了新的文献求助10
24秒前
han应助归华采纳,获得10
25秒前
25秒前
SYLH应助zly采纳,获得30
28秒前
完美世界应助娇气的天亦采纳,获得10
30秒前
32秒前
35秒前
科目三应助彭栋采纳,获得10
37秒前
方文浩发布了新的文献求助10
37秒前
ding应助YWang采纳,获得10
40秒前
40秒前
林宝雯关注了科研通微信公众号
45秒前
48秒前
斯文败类应助GGBOND采纳,获得10
48秒前
星辰大海应助科研通管家采纳,获得10
48秒前
李健的小迷弟应助GGBOND采纳,获得10
48秒前
上官若男应助科研通管家采纳,获得10
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105