亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study

胰岛素抵抗 机器学习 人工智能 计算机科学 人口 杠杆(统计) 医学 肥胖 内科学 环境卫生
作者
Álvaro Torres-Martos,Augusto Anguita‐Ruiz,Mireia Bustos-Aibar,Alberto Ramírez-Mena,M Arteaga,Gloria Bueno,Rosaura Leis,Concepción M. Aguilera,Rafael Alcalá,Jesús Alcalá‐Fdez
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:156: 102962-102962
标识
DOI:10.1016/j.artmed.2024.102962
摘要

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaozhao完成签到 ,获得积分10
7秒前
冷傲渊思完成签到,获得积分10
19秒前
谢小盟完成签到 ,获得积分10
24秒前
45秒前
上官若男应助安之若素采纳,获得10
53秒前
Perry完成签到,获得积分10
1分钟前
咕咕咕咕发布了新的文献求助30
1分钟前
咕咕咕咕完成签到,获得积分10
1分钟前
安之若素完成签到,获得积分20
1分钟前
1分钟前
安之若素发布了新的文献求助10
1分钟前
3分钟前
gszy1975发布了新的文献求助10
3分钟前
大喜子完成签到 ,获得积分10
5分钟前
科研通AI2S应助欣喜若灵采纳,获得10
5分钟前
5分钟前
欣喜若灵发布了新的文献求助10
5分钟前
赘婿应助krajicek采纳,获得30
6分钟前
6分钟前
Mayer1234088发布了新的文献求助10
7分钟前
7分钟前
krajicek发布了新的文献求助30
7分钟前
8分钟前
liufinity发布了新的文献求助10
8分钟前
柿饼完成签到,获得积分10
8分钟前
英俊的铭应助liufinity采纳,获得10
8分钟前
8分钟前
krajicek发布了新的文献求助10
8分钟前
大个应助科研通管家采纳,获得10
8分钟前
小马甲应助科研通管家采纳,获得30
8分钟前
雪糕考研完成签到 ,获得积分10
8分钟前
9分钟前
liufinity发布了新的文献求助10
9分钟前
沧海云完成签到 ,获得积分10
9分钟前
Akim应助EmmaZ采纳,获得10
11分钟前
Frank应助地尔硫卓采纳,获得50
11分钟前
11分钟前
EmmaZ发布了新的文献求助10
11分钟前
EmmaZ完成签到,获得积分10
11分钟前
派大星完成签到 ,获得积分10
12分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865848
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629728
版权声明 601853