亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study

胰岛素抵抗 机器学习 人工智能 计算机科学 人口 杠杆(统计) 医学 肥胖 内科学 环境卫生
作者
Álvaro Torres-Martos,Augusto Anguita‐Ruiz,Mireia Bustos-Aibar,Alberto Ramírez-Mena,M Arteaga,Gloria Bueno,Rosaura Leis,Concepción M. Aguilera,Rafael Alcalá,Jesús Alcalá‐Fdez
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:156: 102962-102962 被引量:1
标识
DOI:10.1016/j.artmed.2024.102962
摘要

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
22秒前
百里幻竹发布了新的文献求助10
28秒前
32秒前
dyuguo3完成签到 ,获得积分10
50秒前
jun完成签到,获得积分10
59秒前
wang完成签到,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得50
1分钟前
馆长应助科研通管家采纳,获得30
1分钟前
1分钟前
Harrison发布了新的文献求助10
1分钟前
充电宝应助Harrison采纳,获得30
2分钟前
2分钟前
Gemh发布了新的文献求助30
2分钟前
2分钟前
LWT发布了新的文献求助10
2分钟前
闫伊森完成签到,获得积分10
2分钟前
Yini完成签到,获得积分0
2分钟前
Ashao完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助Gemh采纳,获得10
2分钟前
周冯雪完成签到 ,获得积分10
2分钟前
3分钟前
LWT完成签到,获得积分10
3分钟前
Gemh发布了新的文献求助10
3分钟前
mathmotive完成签到,获得积分10
3分钟前
souther完成签到,获得积分0
3分钟前
3分钟前
哈哈哈哈完成签到,获得积分10
3分钟前
高贵的冰旋完成签到 ,获得积分10
4分钟前
SiriWang77完成签到,获得积分10
4分钟前
SiriWang77发布了新的文献求助10
5分钟前
hugo完成签到,获得积分20
5分钟前
幸运的姜姜完成签到 ,获得积分10
5分钟前
5分钟前
斯文败类应助科研通管家采纳,获得10
5分钟前
5分钟前
夏花般灿烂完成签到,获得积分10
6分钟前
科研通AI6应助xiaxia采纳,获得10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910068
求助须知:如何正确求助?哪些是违规求助? 4186087
关于积分的说明 12999029
捐赠科研通 3953339
什么是DOI,文献DOI怎么找? 2167876
邀请新用户注册赠送积分活动 1186328
关于科研通互助平台的介绍 1093381