已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study

胰岛素抵抗 机器学习 人工智能 计算机科学 人口 杠杆(统计) 医学 肥胖 内科学 环境卫生
作者
Álvaro Torres-Martos,Augusto Anguita‐Ruiz,Mireia Bustos-Aibar,Alberto Ramírez-Mena,M Arteaga,Gloria Bueno,Rosaura Leis,Concepción M. Aguilera,Rafael Alcalá,Jesús Alcalá‐Fdez
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:156: 102962-102962 被引量:1
标识
DOI:10.1016/j.artmed.2024.102962
摘要

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖虎发布了新的文献求助10
1秒前
温暖眼神完成签到,获得积分10
1秒前
Carole发布了新的文献求助10
2秒前
Shyee完成签到 ,获得积分10
2秒前
Jasmine完成签到,获得积分10
3秒前
4秒前
高铭泽完成签到,获得积分10
5秒前
火神杯完成签到,获得积分10
5秒前
斯文败类应助hellogene采纳,获得10
5秒前
6秒前
Geass发布了新的文献求助10
7秒前
沉静乾完成签到,获得积分10
7秒前
高铭泽发布了新的文献求助10
9秒前
仵一完成签到,获得积分10
10秒前
科研通AI6应助火神杯采纳,获得10
10秒前
11秒前
11秒前
六书院完成签到,获得积分10
15秒前
15秒前
Dr_J完成签到,获得积分10
16秒前
16秒前
端庄洪纲完成签到 ,获得积分10
17秒前
Jason完成签到 ,获得积分10
18秒前
小李同学发布了新的文献求助10
19秒前
曲淳发布了新的文献求助10
20秒前
lx完成签到,获得积分10
20秒前
123完成签到 ,获得积分10
21秒前
22秒前
weibo完成签到,获得积分10
24秒前
英姑应助聪聪great采纳,获得10
27秒前
RWcreator完成签到 ,获得积分10
27秒前
橘子柚子完成签到 ,获得积分10
28秒前
DocM完成签到 ,获得积分10
29秒前
大包鸡完成签到 ,获得积分10
29秒前
Lester完成签到 ,获得积分10
29秒前
所所应助高铭泽采纳,获得10
31秒前
丘比特应助高铭泽采纳,获得10
31秒前
大模型应助高铭泽采纳,获得10
31秒前
汉堡包应助高铭泽采纳,获得10
31秒前
小马甲应助高铭泽采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525082
关于积分的说明 14100857
捐赠科研通 4438819
什么是DOI,文献DOI怎么找? 2436491
邀请新用户注册赠送积分活动 1428483
关于科研通互助平台的介绍 1406504