Multiomics and eXplainable artificial intelligence for decision support in insulin resistance early diagnosis: A pediatric population-based longitudinal study

胰岛素抵抗 机器学习 人工智能 计算机科学 人口 杠杆(统计) 医学 肥胖 内科学 环境卫生
作者
Álvaro Torres-Martos,Augusto Anguita‐Ruiz,Mireia Bustos-Aibar,Alberto Ramírez-Mena,M Arteaga,Gloria Bueno,Rosaura Leis,Concepción M. Aguilera,Rafael Alcalá,Jesús Alcalá‐Fdez
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:156: 102962-102962 被引量:1
标识
DOI:10.1016/j.artmed.2024.102962
摘要

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated comorbidities. The construction of effective and robust predictive systems for a complex health outcome like insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both the decision-making mechanisms of the system and the impact of the features on each automatic decision, an essential issue in high-risk areas such as this one where system decisions may affect people's lives. The system showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when building decision support systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
阿胡发布了新的文献求助10
2秒前
chenyi发布了新的文献求助10
2秒前
kindong完成签到,获得积分10
3秒前
zoeyyy完成签到,获得积分10
4秒前
Lucas应助WANG采纳,获得10
4秒前
4秒前
4秒前
Xltox完成签到,获得积分10
5秒前
XylonYu完成签到,获得积分10
6秒前
华仔应助碧蓝碧凡采纳,获得10
7秒前
8秒前
超勍发布了新的文献求助10
12秒前
小马甲应助yuanshl1985采纳,获得10
12秒前
zhuxiaonian完成签到,获得积分10
15秒前
田様应助淘气科研采纳,获得10
15秒前
chenyi完成签到,获得积分10
16秒前
zyyyy完成签到,获得积分10
16秒前
奶黄包完成签到 ,获得积分10
16秒前
SYLH应助海阔天空采纳,获得10
16秒前
16秒前
机灵又蓝完成签到,获得积分10
17秒前
张土豆完成签到 ,获得积分10
17秒前
善学以致用应助小王采纳,获得10
17秒前
orang完成签到,获得积分10
18秒前
巧巧艾完成签到,获得积分10
18秒前
19秒前
邵洋完成签到,获得积分10
19秒前
sl发布了新的文献求助10
19秒前
20秒前
小迪迦奥特曼完成签到,获得积分10
20秒前
20秒前
cckk发布了新的文献求助10
21秒前
夏目由美完成签到 ,获得积分10
21秒前
Jasper应助哦哦哦采纳,获得10
22秒前
YYD完成签到,获得积分10
22秒前
超勍完成签到,获得积分10
22秒前
碧蓝碧凡发布了新的文献求助10
23秒前
Popeye应助鹤鸣采纳,获得30
23秒前
YYD发布了新的文献求助10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029