LTSCD-YOLO: A Lightweight Algorithm for Detecting Typical Satellite Components Based on Improved YOLOv8

计算机科学 瓶颈 算法 卫星 卷积(计算机科学) 参数化复杂度 比例(比率) 组分(热力学) 实时计算 人工智能 人工神经网络 嵌入式系统 物理 量子力学 工程类 热力学 航空航天工程
作者
Zixuan Tang,Wei Zhang,Junlin Li,Ran Liu,Yan‐Song Xu,Siyu Chen,Zhiyue Fang,Fuchenglong Zhao
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (16): 3101-3101 被引量:1
标识
DOI:10.3390/rs16163101
摘要

Typical satellite component detection is an application-valuable and challenging research field. Currently, there are many algorithms for detecting typical satellite components, but due to the limited storage space and computational resources in the space environment, these algorithms generally have the problem of excessive parameter count and computational load, which hinders their effective application in space environments. Furthermore, the scale of datasets used by these algorithms is not large enough to train the algorithm models well. To address the above issues, this paper first applies YOLOv8 to the detection of typical satellite components and proposes a Lightweight Typical Satellite Components Detection algorithm based on improved YOLOv8 (LTSCD-YOLO). Firstly, it adopts the lightweight network EfficientNet-B0 as the backbone network to reduce the model’s parameter count and computational load; secondly, it uses a Cross-Scale Feature-Fusion Module (CCFM) at the Neck to enhance the model’s adaptability to scale changes; then, it integrates Partial Convolution (PConv) into the C2f (Faster Implementation of CSP Bottleneck with two convolutions) module and Re-parameterized Convolution (RepConv) into the detection head to further achieve model lightweighting; finally, the Focal-Efficient Intersection over Union (Focal-EIoU) is used as the loss function to enhance the model’s detection accuracy and detection speed. Additionally, a larger-scale Typical Satellite Components Dataset (TSC-Dataset) is also constructed. Our experimental results show that LTSCD-YOLO can maintain high detection accuracy with minimal parameter count and computational load. Compared to YOLOv8s, LTSCD-YOLO improved the mean average precision (mAP50) by 1.50% on the TSC-Dataset, reaching 94.5%. Meanwhile, the model’s parameter count decreased by 78.46%, the computational load decreased by 65.97%, and the detection speed increased by 17.66%. This algorithm achieves a balance between accuracy and light weight, and its generalization ability has been validated on real images, making it effectively applicable to detection tasks of typical satellite components in space environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
01AE86完成签到,获得积分10
1秒前
刘欢发布了新的文献求助10
2秒前
wanci应助小王采纳,获得10
3秒前
Silole发布了新的文献求助10
4秒前
5秒前
6秒前
Cactus应助jj采纳,获得10
6秒前
橘子完成签到,获得积分20
7秒前
自由的秋灵完成签到,获得积分10
7秒前
高高世界发布了新的文献求助10
8秒前
兔子大王完成签到,获得积分10
9秒前
泡芙完成签到 ,获得积分10
9秒前
橘子发布了新的文献求助10
10秒前
殷勤的秋荷完成签到,获得积分10
12秒前
凉拌折耳根完成签到,获得积分10
12秒前
14秒前
斯文觅珍完成签到,获得积分10
16秒前
清新的冬灵完成签到,获得积分20
16秒前
01AE86关注了科研通微信公众号
17秒前
二维世界的鱼完成签到,获得积分10
19秒前
19秒前
悬铃木发布了新的文献求助10
19秒前
20秒前
Akim应助Redamancy采纳,获得10
20秒前
Meya发布了新的文献求助10
24秒前
26秒前
26秒前
勤奋尔曼应助明理的凌旋采纳,获得10
28秒前
泡泡完成签到 ,获得积分10
28秒前
科研通AI5应助旺仔牛奶糖采纳,获得10
28秒前
斑马可以睡了完成签到,获得积分20
29秒前
30秒前
hbhbj完成签到,获得积分10
32秒前
小王发布了新的文献求助10
33秒前
35秒前
36秒前
38秒前
杨皓文完成签到,获得积分10
38秒前
酷波er应助Silole采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756733
求助须知:如何正确求助?哪些是违规求助? 3300097
关于积分的说明 10112328
捐赠科研通 3014521
什么是DOI,文献DOI怎么找? 1655605
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546