TestART: Improving LLM-based Unit Test via Co-evolution of Automated Generation and Repair Iteration

考试(生物学) 单元测试 单位(环理论) 可靠性工程 计算机科学 数学 工程类 操作系统 生物 数学教育 生态学 软件
作者
Siqi Gu,Chunrong Fang,Quanjun Zhang,Fangyuan Tian,Jianyi Zhou,Zhenyu Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.03095
摘要

Unit test is crucial for detecting bugs in individual program units but consumes time and effort. The existing automated unit test generation methods are mainly based on search-based software testing (SBST) and language models to liberate developers. Recently, large language models (LLMs) have demonstrated remarkable reasoning and generation capabilities. However, several problems limit their ability to generate high-quality test cases: (1) LLMs may generate invalid test cases under insufficient context, resulting in compilation errors; (2) Lack of test and coverage feedback information may cause runtime errors and low coverage rates. (3) The repetitive suppression problem causes LLMs to get stuck into the repetition loop of self-repair or re-generation attempts. In this paper, we propose TestART, a novel unit test generation method that leverages the strengths of LLMs while overcoming the limitations mentioned. TestART improves LLM-based unit test via co-evolution of automated generation and repair iteration. TestART leverages the template-based repair technique to fix bugs in LLM-generated test cases, using prompt injection to guide the next-step automated generation and avoid repetition suppression. Furthermore, TestART extracts coverage information from the passed test cases and utilizes it as testing feedback to enhance the sufficiency of the final test case. This synergy between generation and repair elevates the quality, effectiveness, and readability of the produced test cases significantly beyond previous methods. In comparative experiments, the pass rate of TestART-generated test cases is 78.55%, which is approximately 18% higher than both the ChatGPT-4.0 model and the same ChatGPT-3.5-based method ChatUniTest. It also achieves an impressive line coverage rate of 90.96% on the focal methods that passed the test, exceeding EvoSuite by 3.4%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang完成签到,获得积分10
刚刚
bkagyin应助体贴的青烟采纳,获得10
1秒前
1秒前
科目三应助Bella采纳,获得10
1秒前
2秒前
完美世界应助钱多多采纳,获得10
2秒前
沉静的颦完成签到,获得积分10
2秒前
Endeavor完成签到,获得积分10
3秒前
Zhao完成签到,获得积分10
3秒前
ding应助易旸采纳,获得10
4秒前
4秒前
shinan完成签到,获得积分10
5秒前
yang发布了新的文献求助10
5秒前
5秒前
浮游应助xiaoyao采纳,获得10
6秒前
坚定笑蓝发布了新的文献求助10
6秒前
Clover发布了新的文献求助10
6秒前
7秒前
落后猫咪应助无所屌谓采纳,获得10
7秒前
9秒前
xiaoyao完成签到,获得积分10
9秒前
邹坤发布了新的文献求助10
10秒前
10秒前
CCC完成签到,获得积分10
10秒前
le123zxc完成签到,获得积分10
11秒前
WZY666发布了新的文献求助30
11秒前
11秒前
黄家宝完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助10
11秒前
丘比特应助Lurant采纳,获得10
12秒前
大幂幂完成签到,获得积分10
13秒前
无感发布了新的文献求助10
14秒前
xiong完成签到,获得积分10
14秒前
大个应助好名字采纳,获得10
15秒前
15秒前
15秒前
天天快乐应助黄家宝采纳,获得10
16秒前
共享精神应助复杂的无敌采纳,获得10
16秒前
zz完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722