TestART: Improving LLM-based Unit Test via Co-evolution of Automated Generation and Repair Iteration

考试(生物学) 单元测试 单位(环理论) 可靠性工程 计算机科学 数学 工程类 操作系统 生物 数学教育 生态学 软件
作者
Siqi Gu,Chunrong Fang,Quanjun Zhang,Fangyuan Tian,Jianyi Zhou,Zhenyu Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.03095
摘要

Unit test is crucial for detecting bugs in individual program units but consumes time and effort. The existing automated unit test generation methods are mainly based on search-based software testing (SBST) and language models to liberate developers. Recently, large language models (LLMs) have demonstrated remarkable reasoning and generation capabilities. However, several problems limit their ability to generate high-quality test cases: (1) LLMs may generate invalid test cases under insufficient context, resulting in compilation errors; (2) Lack of test and coverage feedback information may cause runtime errors and low coverage rates. (3) The repetitive suppression problem causes LLMs to get stuck into the repetition loop of self-repair or re-generation attempts. In this paper, we propose TestART, a novel unit test generation method that leverages the strengths of LLMs while overcoming the limitations mentioned. TestART improves LLM-based unit test via co-evolution of automated generation and repair iteration. TestART leverages the template-based repair technique to fix bugs in LLM-generated test cases, using prompt injection to guide the next-step automated generation and avoid repetition suppression. Furthermore, TestART extracts coverage information from the passed test cases and utilizes it as testing feedback to enhance the sufficiency of the final test case. This synergy between generation and repair elevates the quality, effectiveness, and readability of the produced test cases significantly beyond previous methods. In comparative experiments, the pass rate of TestART-generated test cases is 78.55%, which is approximately 18% higher than both the ChatGPT-4.0 model and the same ChatGPT-3.5-based method ChatUniTest. It also achieves an impressive line coverage rate of 90.96% on the focal methods that passed the test, exceeding EvoSuite by 3.4%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助路宝采纳,获得10
1秒前
1秒前
浮游应助舒心的向卉采纳,获得10
1秒前
liamddd完成签到 ,获得积分10
1秒前
星辰大海应助传统的雨文采纳,获得10
1秒前
1秒前
2秒前
jjjwln发布了新的文献求助10
3秒前
Van完成签到,获得积分10
3秒前
Ruia发布了新的文献求助10
4秒前
5秒前
赘婿应助li采纳,获得10
5秒前
6秒前
自觉问芙发布了新的文献求助10
7秒前
spume发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
不安青牛应助科研通管家采纳,获得10
11秒前
干净寻冬应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
11秒前
路宝发布了新的文献求助10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
干净寻冬应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得30
12秒前
852应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
12秒前
壮壮学长发布了新的文献求助20
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620905
求助须知:如何正确求助?哪些是违规求助? 4705599
关于积分的说明 14932648
捐赠科研通 4763944
什么是DOI,文献DOI怎么找? 2551370
邀请新用户注册赠送积分活动 1513876
关于科研通互助平台的介绍 1474715