TestART: Improving LLM-based Unit Test via Co-evolution of Automated Generation and Repair Iteration

考试(生物学) 单元测试 单位(环理论) 可靠性工程 计算机科学 数学 工程类 操作系统 生物 数学教育 生态学 软件
作者
Siqi Gu,Chunrong Fang,Quanjun Zhang,Fangyuan Tian,Jianyi Zhou,Zhenyu Chen
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2408.03095
摘要

Unit test is crucial for detecting bugs in individual program units but consumes time and effort. The existing automated unit test generation methods are mainly based on search-based software testing (SBST) and language models to liberate developers. Recently, large language models (LLMs) have demonstrated remarkable reasoning and generation capabilities. However, several problems limit their ability to generate high-quality test cases: (1) LLMs may generate invalid test cases under insufficient context, resulting in compilation errors; (2) Lack of test and coverage feedback information may cause runtime errors and low coverage rates. (3) The repetitive suppression problem causes LLMs to get stuck into the repetition loop of self-repair or re-generation attempts. In this paper, we propose TestART, a novel unit test generation method that leverages the strengths of LLMs while overcoming the limitations mentioned. TestART improves LLM-based unit test via co-evolution of automated generation and repair iteration. TestART leverages the template-based repair technique to fix bugs in LLM-generated test cases, using prompt injection to guide the next-step automated generation and avoid repetition suppression. Furthermore, TestART extracts coverage information from the passed test cases and utilizes it as testing feedback to enhance the sufficiency of the final test case. This synergy between generation and repair elevates the quality, effectiveness, and readability of the produced test cases significantly beyond previous methods. In comparative experiments, the pass rate of TestART-generated test cases is 78.55%, which is approximately 18% higher than both the ChatGPT-4.0 model and the same ChatGPT-3.5-based method ChatUniTest. It also achieves an impressive line coverage rate of 90.96% on the focal methods that passed the test, exceeding EvoSuite by 3.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小怪兽完成签到,获得积分10
刚刚
刚刚
Kiosta发布了新的文献求助10
刚刚
Lucas应助凶狠的映菱采纳,获得10
1秒前
1秒前
ding应助尘尘笑采纳,获得10
1秒前
无语的凡梦完成签到,获得积分10
1秒前
2秒前
传统的松鼠完成签到 ,获得积分10
2秒前
哭泣又柔发布了新的文献求助10
2秒前
隐形的大有完成签到,获得积分10
2秒前
2秒前
FlipFlops完成签到,获得积分10
3秒前
shiy发布了新的文献求助10
3秒前
YB完成签到,获得积分10
4秒前
雷家完成签到,获得积分10
4秒前
无名完成签到,获得积分10
5秒前
gg完成签到,获得积分10
5秒前
zyw完成签到 ,获得积分10
6秒前
小酥饼完成签到,获得积分10
6秒前
怡然白竹完成签到 ,获得积分10
6秒前
Jasper应助忐忑的冷卉采纳,获得10
6秒前
hi_zhanghao完成签到,获得积分10
6秒前
WANG完成签到,获得积分10
7秒前
锺zhishui完成签到,获得积分10
7秒前
懒羊羊完成签到,获得积分10
7秒前
7秒前
chenyou完成签到,获得积分10
7秒前
8秒前
8秒前
萌仔完成签到 ,获得积分10
8秒前
一二发布了新的文献求助10
8秒前
口爱DI乔巴完成签到,获得积分10
9秒前
我我我完成签到,获得积分10
9秒前
9秒前
shiy完成签到,获得积分10
9秒前
Baneyhua完成签到,获得积分10
9秒前
10秒前
彭于晏应助时尚半仙采纳,获得10
10秒前
Lucky完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5009518
求助须知:如何正确求助?哪些是违规求助? 4251634
关于积分的说明 13246493
捐赠科研通 4053100
什么是DOI,文献DOI怎么找? 2217170
邀请新用户注册赠送积分活动 1226902
关于科研通互助平台的介绍 1148857