3D Bristle-Structured, Knitted-Fabric-Based Triboelectric Sensors for Machine Learning-Based Motion Recognition

摩擦电效应 材料科学 刚毛 运动传感器 运动(物理) 3d打印 复合材料 机械工程 人工智能 计算机科学 工程类 生物医学工程 刷子
作者
Yongwei Li,Jingzhe Sun,Dong-Hoon Choi,Zihao Zheng,Jong‐Jin Park,Yong Xiang,Jihyun Bae
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c12041
摘要

With the development of electronic technology, triboelectric-based sensors have been widely researched in fields such as healthcare, rehabilitation training, and sports assistance due to their manufacturing convenience and self-powering advantages. Among them, 3D fabric-based triboelectric sensors not only possess advantages such as easy mechanized production, good breathability, and ease of wearing but also their unique 3D structure enhances the specific surface area, thereby amplifying the sensitivity. This study proposes a 3D bristle-structured fabric made by a digital knitting technology that has not been studied widely for triboelectric devices. By applying the 3D bristle structure with a large specific surface area to the single jersey fabric, the effective contact area during friction can be increased, resulting in a higher surface charge density. Additionally, the microcapacitor-like effect provided by the numerous microstructures allows the device to store more surface charge, further improving the output performance. The study systematically investigates the output performance of four different structures assembled by single jersey and 3D bristle-structured fabrics. The optimal sample exhibits a 57% higher output voltage than that of the reference 2D fabric sample. The 3D bristle-structured fabric demonstrates linear high sensitivity and distinct output performance when used as a sensor. Finally, a machine learning integration is applied to judge motion to assist a baseball pitcher in a self-training system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助活泼的小鸽子采纳,获得10
刚刚
FashionBoy应助酷炫的傲易采纳,获得10
1秒前
成就白秋完成签到,获得积分10
1秒前
求索发布了新的文献求助10
1秒前
2秒前
2秒前
爆米花应助认真的飞扬采纳,获得10
3秒前
3秒前
Dasha完成签到 ,获得积分10
3秒前
852应助杜杜采纳,获得10
4秒前
thousandlong完成签到,获得积分10
4秒前
4秒前
小柒发布了新的文献求助10
5秒前
5秒前
风华正茂发布了新的文献求助10
5秒前
上官若男应助王哪跑12采纳,获得10
6秒前
6秒前
6秒前
加菲猫发布了新的文献求助10
7秒前
一呆完成签到,获得积分10
7秒前
8秒前
苹果紫萱发布了新的文献求助10
9秒前
9秒前
求索完成签到,获得积分10
10秒前
11秒前
11秒前
平淡惋清完成签到,获得积分10
11秒前
11秒前
12秒前
bkagyin应助Marybaby采纳,获得10
12秒前
TANG发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
科研狗发布了新的文献求助10
15秒前
16秒前
BBQ完成签到,获得积分10
17秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219123
求助须知:如何正确求助?哪些是违规求助? 2868054
关于积分的说明 8159169
捐赠科研通 2535055
什么是DOI,文献DOI怎么找? 1367494
科研通“疑难数据库(出版商)”最低求助积分说明 645052
邀请新用户注册赠送积分活动 618243