鉴定(生物学)
药物发现
拉曼散射
卷积神经网络
计算机科学
纳米技术
工具箱
药物开发
药品
过程(计算)
深度学习
材料科学
拉曼光谱
化学
人工智能
药理学
医学
生物
物理
生物化学
植物
光学
程序设计语言
操作系统
作者
Jiajia Sun,Wei Lai,Jiayan Zhao,Jinhong Xue,Tong Zhu,Mingshu Xiao,Tiantian Man,Ying Wan,Hao Pei,Li Li
出处
期刊:ACS Sensors
[American Chemical Society]
日期:2024-08-13
标识
DOI:10.1021/acssensors.4c01205
摘要
Rapid identification of drug mechanisms is vital to the development and effective use of chemotherapeutics. Herein, we develop a multichannel surface-enhanced Raman scattering (SERS) sensor array and apply deep learning approaches to realize the rapid identification of the mechanisms of various chemotherapeutic drugs. By implementing a series of self-assembled monolayers (SAMs) with varied molecular characteristics to promote heterogeneous physicochemical interactions at the interfaces, the sensor can generate diversified SERS signatures for directly high-dimensionality fingerprinting drug-induced molecular changes in cells. We further train the convolutional neural network model on the multidimensional SAM-modulated SERS data set and achieve a discriminatory accuracy toward 99%. We expect that such a platform will contribute to expanding the toolbox for drug screening and characterization and facilitate the drug development process.
科研通智能强力驱动
Strongly Powered by AbleSci AI