SAKit: an all-in-one analysis pipeline for identifying novel proteins resulting from variant events at both large and small scales

管道(软件) 计算机科学 情报检索 下载 图书馆学 数据科学 万维网 程序设计语言
作者
Yan Li,Boran Wang,Zengding Wu,Shiliang Ji,Shi Xu,Caiyi Fei
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:22 (05)
标识
DOI:10.1142/s0219720024500227
摘要

Background: Genetic mutations that cause the inactivation or aberrant activation of essential proteins may trigger alterations or even dysfunctions in cellular signaling pathways, culminating in the development of precancerous lesions and cancer. Mutations and such dysfunctions can result in the generation of "novel proteins" that are not part of the conventional human proteome. Identification of these proteins carries a profound potential for unraveling promising drug targets and designing innovative therapeutic models. Despite the emergence of diverse tools for detecting DNA or RNA variants, facilitated by the widespread adoption of nucleotide sequencing technology, these methods primarily target point mutations and exhibit suboptimal performance in detecting large-scale and combinatorial mutations. Additionally, the outcomes of these tools are confined to the genome and transcriptome levels, and do not provide the corresponding protein information resulting from genetic alterations. Results: We present the development of Sequencing Analysis Kit (SAKit), a bioinformatics pipeline for hybrid sequencing analysis integrating long-read and short-read RNA sequencing data. Long reads are utilized for detecting large-scale variations such as gene fusions, exon skipping, intron retention, and aberrant expression in non-coding regions, owing to their excellent coverage capabilities. Short reads serve to validate these findings at breakpoints and splice junctions. Conversely, short reads are employed for identifying small-scale variations, including single nucleotide variants, deletions, and insertions, due to their superior sequencing depth, with long reads providing additional validation. SAKit is designed to perform analyses using inter-species configuration files comprising genome references and annotation data, making it applicable to both human and mouse studies. Furthermore, SAKit implements a hierarchical filtering approach to eliminate low-confidence variants and employs open reading frame (ORF) analysis to translate identified variants into protein sequences. Conclusion: SAKit is a robust and versatile bioinformatics tool designed for the comprehensive identification of both large-scale and small-scale variants from RNA-seq data, facilitating the discovery of novel proteins. This pipeline integrates analysis of long-read and short-read sequencing data, offering a powerful solution for researchers in genomics and transcriptomics. SAKit is freely accessible and open-source, available through GitHub (https://github.com/therarna/SAKit) and as a Docker image https://hub.docker.com/repository/docker/therarna). Implemented primarily within a Snakemake framework using Python, SAKit ensures reproducibility, scalability, and ease of use for the scientific community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助ahhhhh采纳,获得10
1秒前
析界成微发布了新的文献求助150
2秒前
析界成微发布了新的文献求助10
4秒前
4秒前
小虫学长应助哈哈哈采纳,获得10
6秒前
Emma发布了新的文献求助10
7秒前
8秒前
9秒前
青山落日秋月春风完成签到,获得积分10
9秒前
10秒前
Yochamme发布了新的文献求助10
10秒前
11秒前
一只波完成签到,获得积分20
12秒前
万能图书馆应助111采纳,获得10
14秒前
ahhhhh发布了新的文献求助10
14秒前
XXGG完成签到 ,获得积分10
14秒前
周shang发布了新的文献求助10
15秒前
Obliviate完成签到,获得积分10
15秒前
淡淡宛完成签到 ,获得积分10
16秒前
共享精神应助Yochamme采纳,获得10
16秒前
混沌完成签到,获得积分10
17秒前
John驳回了香菜应助
18秒前
lmj关闭了lmj文献求助
22秒前
失眠醉易完成签到 ,获得积分10
23秒前
付国瑞完成签到,获得积分10
24秒前
摔碎玻璃瓶完成签到,获得积分10
25秒前
sztao发布了新的文献求助10
27秒前
Jasper应助sdl采纳,获得10
27秒前
28秒前
悦耳羽毛完成签到,获得积分10
28秒前
田様应助古琴残梦采纳,获得10
29秒前
唯为应助科研通管家采纳,获得10
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
coco应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
30秒前
烟花应助科研通管家采纳,获得10
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
周shang完成签到,获得积分10
30秒前
1111发布了新的文献求助30
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774446
求助须知:如何正确求助?哪些是违规求助? 3320164
关于积分的说明 10198787
捐赠科研通 3034832
什么是DOI,文献DOI怎么找? 1665231
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757558