TRAA: a two-risk archive algorithm for expensive many-objective optimization

计算智能 计算机科学 优化算法 数学优化 算法 人工智能 数学
作者
Ji Lin,Quanliang Liu
出处
期刊:Complex & Intelligent Systems
标识
DOI:10.1007/s40747-024-01499-9
摘要

Abstract Many engineering problems are essentially expensive multi-/many-objective optimization problems, and surrogate-assisted evolutionary algorithms have gained widespread attention in dealing with them. As the objective dimension increases, the error of predicting solutions based on surrogate models accumulates. Existing algorithms do not have strong selection pressure in the candidate solution obtaining and adaptive sampling stages. These make the effectiveness and area of application of the algorithms unsatisfactory. Therefore, this paper proposes a two-risk archive algorithm, which contains a strategy for mining high-risk and low-risk archives and a four-state adaptive sampling criterion. In the candidate solution mining stage, two types of Kriging models are trained, then conservative optimization models and non-conservative optimization models are constructed for model searching, followed by archive selection to obtain more reliable two-risk archives. In the adaptive sampling stage, in order to improve the performance of the algorithms, the proposed criterion considers environmental assessment, demand assessment, and sampling, where the sampling approach involves the improvement of the comprehensive performance in reliable environments, convergence and diversity in controversial environments, and surrogate model uncertainty. Experimental results on numerous benchmark problems show that the proposed algorithm is far superior to seven state-of-the-art algorithms in terms of comprehensive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助指定能行采纳,获得10
刚刚
ysy完成签到,获得积分10
刚刚
研友_VZG7GZ应助pandary采纳,获得10
1秒前
wy完成签到,获得积分20
1秒前
JamesPei应助小宇子采纳,获得10
2秒前
传奇3应助strace采纳,获得10
3秒前
小恶于完成签到 ,获得积分10
3秒前
忍冬完成签到,获得积分10
3秒前
fox发布了新的文献求助10
4秒前
4秒前
lqh0211发布了新的文献求助20
4秒前
月颜完成签到,获得积分10
5秒前
5秒前
PINk完成签到,获得积分10
5秒前
酷波er应助111采纳,获得10
7秒前
8秒前
jjj完成签到,获得积分20
8秒前
共享精神应助夜夜采纳,获得10
8秒前
9秒前
清秀的凌柏完成签到,获得积分20
9秒前
9秒前
Pamela发布了新的文献求助10
10秒前
10秒前
华仔应助陈西采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
snutcc发布了新的文献求助10
12秒前
黄桂斌完成签到,获得积分10
12秒前
Dd18753801528完成签到,获得积分20
13秒前
科研通AI5应助邓生采纳,获得10
14秒前
14秒前
jjj发布了新的文献求助20
14秒前
指定能行发布了新的文献求助10
14秒前
17秒前
scn666发布了新的文献求助10
17秒前
Horizon发布了新的文献求助30
18秒前
小开完成签到,获得积分10
19秒前
小蘑菇应助τ涛采纳,获得10
20秒前
21秒前
21秒前
22秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980299
求助须知:如何正确求助?哪些是违规求助? 3524227
关于积分的说明 11220587
捐赠科研通 3261687
什么是DOI,文献DOI怎么找? 1800886
邀请新用户注册赠送积分活动 879359
科研通“疑难数据库(出版商)”最低求助积分说明 807249