TRAA: a two-risk archive algorithm for expensive many-objective optimization

计算智能 计算机科学 优化算法 数学优化 算法 人工智能 数学
作者
Ji Lin,Quanliang Liu
出处
期刊:Complex & Intelligent Systems
标识
DOI:10.1007/s40747-024-01499-9
摘要

Abstract Many engineering problems are essentially expensive multi-/many-objective optimization problems, and surrogate-assisted evolutionary algorithms have gained widespread attention in dealing with them. As the objective dimension increases, the error of predicting solutions based on surrogate models accumulates. Existing algorithms do not have strong selection pressure in the candidate solution obtaining and adaptive sampling stages. These make the effectiveness and area of application of the algorithms unsatisfactory. Therefore, this paper proposes a two-risk archive algorithm, which contains a strategy for mining high-risk and low-risk archives and a four-state adaptive sampling criterion. In the candidate solution mining stage, two types of Kriging models are trained, then conservative optimization models and non-conservative optimization models are constructed for model searching, followed by archive selection to obtain more reliable two-risk archives. In the adaptive sampling stage, in order to improve the performance of the algorithms, the proposed criterion considers environmental assessment, demand assessment, and sampling, where the sampling approach involves the improvement of the comprehensive performance in reliable environments, convergence and diversity in controversial environments, and surrogate model uncertainty. Experimental results on numerous benchmark problems show that the proposed algorithm is far superior to seven state-of-the-art algorithms in terms of comprehensive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
传奇3应助王俊采纳,获得10
刚刚
Bzz发布了新的文献求助10
1秒前
幽默不乐发布了新的文献求助30
3秒前
无敌小宽哥完成签到,获得积分20
3秒前
咔什么嚓发布了新的文献求助10
4秒前
李婷婷发布了新的文献求助10
4秒前
4秒前
十言完成签到,获得积分10
4秒前
充电宝应助张三采纳,获得10
5秒前
xxh发布了新的文献求助10
6秒前
雅典娜完成签到,获得积分10
6秒前
王柳完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
linlin发布了新的文献求助10
7秒前
7秒前
sim发布了新的文献求助10
8秒前
Hello应助慕白采纳,获得10
8秒前
8秒前
学呀学发布了新的文献求助10
10秒前
11秒前
11秒前
安静绯完成签到,获得积分10
11秒前
传奇3应助zhy采纳,获得10
12秒前
12秒前
12秒前
上官若男应助陌上花开采纳,获得10
14秒前
聪明白羊完成签到,获得积分10
14秒前
14秒前
iNk应助Shalan采纳,获得20
14秒前
qqy完成签到,获得积分10
14秒前
14秒前
echo完成签到,获得积分20
15秒前
东郭井完成签到,获得积分10
15秒前
茶艺大师づ完成签到,获得积分10
15秒前
15秒前
ll完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101389
求助须知:如何正确求助?哪些是违规求助? 2752795
关于积分的说明 7621022
捐赠科研通 2405111
什么是DOI,文献DOI怎么找? 1276127
科研通“疑难数据库(出版商)”最低求助积分说明 616705
版权声明 599058