AI for Multistructure Incidental Findings and Mortality Prediction at Chest CT in Lung Cancer Screening

医学 肺癌 肺癌筛查 放射科 肿瘤科 内科学
作者
Anna M Marcinkiewicz,Mikołaj Buchwald,Aakash Shanbhag,Bryan Bednarski,Aditya Killekar,Robert J.H. Miller,Valerie Builoff,Mark Lemley,Daniel S. Berman,Damini Dey,Piotr J. Slomka
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:8
标识
DOI:10.1148/radiol.240541
摘要

Background Incidental extrapulmonary findings are commonly detected on chest CT scans and can be clinically important. Purpose To integrate artificial intelligence (AI)-based segmentation for multiple structures, coronary artery calcium (CAC), and epicardial adipose tissue with automated feature extraction methods and machine learning to detect extrapulmonary abnormalities and predict all-cause mortality (ACM) in a large multicenter cohort. Materials and Methods In this post hoc analysis, baseline chest CT scans in patients enrolled in the National Lung Screening Trial (NLST) from August 2002 to September 2007 were included from 33 participating sites. Per scan, 32 structures were segmented with a multistructure model. For each structure, 15 clinically interpretable radiomic features were quantified. Four general codes describing abnormalities reported by NLST radiologists were applied to identify extrapulmonary significant incidental findings on the CT scans. Death at 2-year and 10-year follow-up and the presence of extrapulmonary significant incidental findings were predicted with ensemble AI models, and individualized structure risk scores were evaluated. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the performance of the models for prediction of ACM and extrapulmonary significant incidental findings. The Pearson χ
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助shinn采纳,获得10
1秒前
RxX完成签到,获得积分10
1秒前
Galen发布了新的文献求助30
1秒前
02发布了新的文献求助30
1秒前
比比完成签到,获得积分10
2秒前
吴家辉发布了新的文献求助10
3秒前
chase发布了新的文献求助10
3秒前
坚强的哈密瓜完成签到,获得积分10
3秒前
方百招完成签到,获得积分10
4秒前
4秒前
搜集达人应助RxX采纳,获得10
4秒前
joinn完成签到,获得积分10
4秒前
lqmentu完成签到,获得积分10
5秒前
慕青应助ZMY采纳,获得10
6秒前
7秒前
松松小白发布了新的文献求助10
8秒前
9秒前
小蘑菇应助归仔采纳,获得10
10秒前
11秒前
猪猪hero应助ldj6670采纳,获得10
11秒前
Akim应助十分喜欢采纳,获得10
11秒前
华仔应助一蓑烟雨任平生采纳,获得10
13秒前
NexusExplorer应助Hesse采纳,获得10
13秒前
可爱的函函应助吴家辉采纳,获得10
13秒前
苏苏发布了新的文献求助10
14秒前
14秒前
14秒前
17秒前
18秒前
万能图书馆应助墨客采纳,获得10
18秒前
linna发布了新的文献求助10
18秒前
18秒前
lllllllll发布了新的文献求助10
18秒前
19秒前
景穆完成签到,获得积分10
19秒前
小太阳发布了新的文献求助10
20秒前
21秒前
YYONE完成签到,获得积分10
21秒前
23秒前
可爱的函函应助allrubbish采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305