Few-shot image classification based on gradual machine learning

弹丸 计算机科学 人工智能 图像(数学) 一次性 模式识别(心理学) 机器学习 计算机视觉 材料科学 机械工程 工程类 冶金
作者
Na Chen,Xianming Kuang,Feiyu Liu,Kehao Wang,Lijun Zhang,Qun Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:255: 124676-124676
标识
DOI:10.1016/j.eswa.2024.124676
摘要

Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples. The state-of-the-art solutions are built by deep learning, which focuses on designing increasingly complex deep backbones. Unfortunately, the task remains very challenging due to the difficulty of transferring the knowledge learned in training classes to new ones. In this paper, we propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML). It begins with only a few labeled observations, and then gradually labels target images in the increasing order of hardness by iterative factor inference in a factor graph. Specifically, our proposed solution extracts indicative feature representations by deep backbones, and then constructs both unary and binary factors based on the extracted features to facilitate gradual learning. The unary factors are constructed based on class center distance in an embedding space, while the binary factors are constructed based on k-nearest neighborhood. We have empirically validated the performance of the proposed approach on benchmark datasets by a comparative study. Our extensive experiments demonstrate that the proposed approach can improve the SOTA performance by 1%–5% in terms of accuracy. More notably, it is more robust than the existing deep models in that its performance can consistently improve as the size of query set increases while the performance of deep models remains essentially flat or even becomes worse.The source code for the proposed method is available at https://github.com/chn05/FSIC_GML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容的水壶完成签到 ,获得积分10
1秒前
微生完成签到 ,获得积分10
5秒前
6秒前
17秒前
qq完成签到 ,获得积分10
18秒前
xzh完成签到 ,获得积分10
18秒前
19秒前
kiki发布了新的文献求助10
23秒前
胡强发布了新的文献求助10
24秒前
kiki完成签到,获得积分10
29秒前
愉快道之完成签到 ,获得积分10
32秒前
loren313完成签到,获得积分0
32秒前
科目三应助胡强采纳,获得10
33秒前
迅速千愁完成签到 ,获得积分10
39秒前
LT完成签到 ,获得积分10
40秒前
Axs完成签到,获得积分10
44秒前
艮爚完成签到 ,获得积分10
57秒前
ceeray23应助阿鑫采纳,获得10
1分钟前
图喵喵完成签到,获得积分10
1分钟前
1分钟前
pgyq发布了新的文献求助10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
小田完成签到 ,获得积分10
1分钟前
1分钟前
wBw完成签到,获得积分10
1分钟前
阿鑫发布了新的文献求助10
1分钟前
SHXSJN完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
左丘映易完成签到,获得积分0
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
Shicheng发布了新的文献求助10
1分钟前
勤恳的雪卉完成签到,获得积分0
1分钟前
1分钟前
小七完成签到 ,获得积分10
1分钟前
胡强发布了新的文献求助10
2分钟前
2分钟前
聪明的秋天完成签到 ,获得积分10
2分钟前
晴心发布了新的文献求助10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
体心立方金属铌、钽及其硼化物中滑移与孪生机制的研究 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450467
求助须知:如何正确求助?哪些是违规求助? 3045952
关于积分的说明 9003800
捐赠科研通 2734611
什么是DOI,文献DOI怎么找? 1500096
科研通“疑难数据库(出版商)”最低求助积分说明 693341
邀请新用户注册赠送积分活动 691477