亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-shot image classification based on gradual machine learning

弹丸 计算机科学 人工智能 图像(数学) 一次性 模式识别(心理学) 机器学习 计算机视觉 材料科学 机械工程 工程类 冶金
作者
Na Chen,Xianming Kuang,Feiyu Liu,Kehao Wang,Lijun Zhang,Qun Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124676-124676
标识
DOI:10.1016/j.eswa.2024.124676
摘要

Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples. The state-of-the-art solutions are built by deep learning, which focuses on designing increasingly complex deep backbones. Unfortunately, the task remains very challenging due to the difficulty of transferring the knowledge learned in training classes to new ones. In this paper, we propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML). It begins with only a few labeled observations, and then gradually labels target images in the increasing order of hardness by iterative factor inference in a factor graph. Specifically, our proposed solution extracts indicative feature representations by deep backbones, and then constructs both unary and binary factors based on the extracted features to facilitate gradual learning. The unary factors are constructed based on class center distance in an embedding space, while the binary factors are constructed based on k-nearest neighborhood. We have empirically validated the performance of the proposed approach on benchmark datasets by a comparative study. Our extensive experiments demonstrate that the proposed approach can improve the SOTA performance by 1%–5% in terms of accuracy. More notably, it is more robust than the existing deep models in that its performance can consistently improve as the size of query set increases while the performance of deep models remains essentially flat or even becomes worse.The source code for the proposed method is available at https://github.com/chn05/FSIC_GML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
nsc发布了新的文献求助10
7秒前
爆米花应助nsc采纳,获得10
21秒前
22秒前
量子星尘发布了新的文献求助10
27秒前
32秒前
科研通AI2S应助Anto采纳,获得10
36秒前
无辜笑容发布了新的文献求助10
36秒前
46秒前
1分钟前
阿亮发布了新的文献求助10
1分钟前
1分钟前
无辜笑容发布了新的文献求助10
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
元水云发布了新的文献求助30
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
zc98完成签到,获得积分10
2分钟前
8R60d8应助zc98采纳,获得10
2分钟前
andrele发布了新的文献求助10
2分钟前
元水云完成签到,获得积分10
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
3分钟前
nsc发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
猪猪hero应助zc98采纳,获得10
4分钟前
4分钟前
勿惏发布了新的文献求助30
4分钟前
所所应助nsc采纳,获得30
4分钟前
4分钟前
4分钟前
scuter发布了新的文献求助10
4分钟前
scuter完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
nsc发布了新的文献求助30
4分钟前
bbdd2334发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957040
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234096
什么是DOI,文献DOI怎么找? 1787725
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264