亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Few-shot image classification based on gradual machine learning

弹丸 计算机科学 人工智能 图像(数学) 一次性 模式识别(心理学) 机器学习 计算机视觉 材料科学 机械工程 工程类 冶金
作者
Na Chen,Xianming Kuang,Feiyu Liu,Kehao Wang,Lijun Zhang,Qun Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:255: 124676-124676 被引量:1
标识
DOI:10.1016/j.eswa.2024.124676
摘要

Few-shot image classification aims to accurately classify unlabeled images using only a few labeled samples. The state-of-the-art solutions are built by deep learning, which focuses on designing increasingly complex deep backbones. Unfortunately, the task remains very challenging due to the difficulty of transferring the knowledge learned in training classes to new ones. In this paper, we propose a novel approach based on the non-i.i.d paradigm of gradual machine learning (GML). It begins with only a few labeled observations, and then gradually labels target images in the increasing order of hardness by iterative factor inference in a factor graph. Specifically, our proposed solution extracts indicative feature representations by deep backbones, and then constructs both unary and binary factors based on the extracted features to facilitate gradual learning. The unary factors are constructed based on class center distance in an embedding space, while the binary factors are constructed based on k-nearest neighborhood. We have empirically validated the performance of the proposed approach on benchmark datasets by a comparative study. Our extensive experiments demonstrate that the proposed approach can improve the SOTA performance by 1%–5% in terms of accuracy. More notably, it is more robust than the existing deep models in that its performance can consistently improve as the size of query set increases while the performance of deep models remains essentially flat or even becomes worse.The source code for the proposed method is available at https://github.com/chn05/FSIC_GML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
白衣渡姜完成签到,获得积分10
7秒前
wd发布了新的文献求助10
8秒前
祁风完成签到 ,获得积分10
11秒前
王饱饱完成签到 ,获得积分10
15秒前
迷你的靖雁完成签到,获得积分10
19秒前
20秒前
李健完成签到,获得积分10
27秒前
糖伯虎完成签到 ,获得积分10
34秒前
乐乐应助wd采纳,获得10
35秒前
44秒前
周肆完成签到 ,获得积分10
46秒前
余念安完成签到 ,获得积分10
48秒前
pK完成签到 ,获得积分10
55秒前
56秒前
CC发布了新的文献求助10
56秒前
小邸应助科研通管家采纳,获得10
1分钟前
坦率白萱应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得150
1分钟前
小邸应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
小邸应助科研通管家采纳,获得10
1分钟前
伯云完成签到,获得积分10
1分钟前
Jiayi完成签到 ,获得积分10
1分钟前
健忘幻儿完成签到 ,获得积分10
1分钟前
李顺利完成签到 ,获得积分10
1分钟前
1分钟前
CC完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cc完成签到,获得积分10
1分钟前
万能图书馆应助草莓酱采纳,获得10
1分钟前
1分钟前
sino-ft完成签到,获得积分10
2分钟前
dovejingling完成签到,获得积分10
2分钟前
2分钟前
点心完成签到,获得积分10
2分钟前
zwl发布了新的文献求助10
2分钟前
Jim发布了新的文献求助30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497