Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study

医学 新辅助治疗 病态的 生物标志物 肺癌 完全响应 肿瘤科 模式治疗法 癌症 内科学 化疗 乳腺癌 生物化学 化学
作者
Guanchao Ye,Guangyao Wu,Qi Yu,Jia Li,Lanying Li,Chun‐yang Zhang,Jia Li,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Yongde Liao,Zhenwei Shi
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:12 (9): e009348-e009348
标识
DOI:10.1136/jitc-2024-009348
摘要

Objectives Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy response image biomarkers. Methods This study retrospectively obtained non-contrast enhanced and contrast enhancedbubu CT scans of patients with NSCLC who underwent surgery after receiving neoadjuvant immunochemotherapy at multiple centers between August 2019 and February 2023. Deep learning features were extracted from both non-contrast enhanced and contrast enhanced CT scans to construct the predictive models (LUNAI-uCT model and LUNAI-eCT model), respectively. After the feature fusion of these two types of features, a fused model (LUNAI-fCT model) was constructed. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. SHapley Additive exPlanations analysis was used to quantify the impact of CT imaging features on model prediction. To gain insights into how our model makes predictions, we employed Gradient-weighted Class Activation Mapping to generate saliency heatmaps. Results The training and validation datasets included 113 patients from Center A at the 8:2 ratio, and the test dataset included 112 patients (Center B n=73, Center C n=20, Center D n=19). In the test dataset, the LUNAI-uCT, LUNAI-eCT, and LUNAI-fCT models achieved AUCs of 0.762 (95% CI 0.654 to 0.791), 0.797 (95% CI 0.724 to 0.844), and 0.866 (95% CI 0.821 to 0.883), respectively. Conclusions By extracting deep learning features from contrast enhanced and non-contrast enhanced CT, we constructed the LUNAI-fCT model as an imaging biomarker, which can non-invasively predict pathological complete response in neoadjuvant immunochemotherapy for NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
gomm完成签到,获得积分10
3秒前
4秒前
明年发布了新的文献求助10
7秒前
科研通AI2S应助燕祁采纳,获得10
7秒前
qqq完成签到,获得积分10
9秒前
9秒前
二甲酚橙完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
刘佳灏完成签到,获得积分10
12秒前
CipherSage应助西北望采纳,获得10
14秒前
今后应助善良的小白菜采纳,获得10
14秒前
一一应助左白易采纳,获得20
15秒前
15秒前
孤独银耳汤关注了科研通微信公众号
15秒前
刘佳灏发布了新的文献求助10
16秒前
孙成成完成签到 ,获得积分10
19秒前
Ls完成签到 ,获得积分10
19秒前
Jenny完成签到,获得积分10
19秒前
Lucas应助爱幻想的青柠采纳,获得10
22秒前
夏沫完成签到,获得积分10
22秒前
ider给ider的求助进行了留言
23秒前
999z完成签到,获得积分10
24秒前
24秒前
左白易完成签到,获得积分10
25秒前
25秒前
25秒前
白鸽应助Last炫神丶采纳,获得10
25秒前
李爱国应助甜蜜的飞松采纳,获得30
26秒前
Lucia发布了新的文献求助30
26秒前
TORCH完成签到 ,获得积分10
27秒前
28秒前
29秒前
明年关注了科研通微信公众号
31秒前
张怡博完成签到 ,获得积分10
34秒前
35秒前
天真的tian发布了新的文献求助10
35秒前
热心的咖啡豆完成签到,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870