Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study

医学 接收机工作特性 新辅助治疗 生物标志物 肺癌 肿瘤科 成像生物标志物 癌症 人工智能 预测值 放射科 内科学 计算机科学 磁共振成像 乳腺癌 生物化学 化学
作者
Guanchao Ye,Guangyao Wu,Qi Yu,Kuo Li,Mingliang Wang,Chun‐yang Zhang,Feng Li,Leonard Wee,André Dekker,Chu Han,Zaiyi Liu,Yongde Liao,Zhenwei Shi
出处
期刊:Journal for ImmunoTherapy of Cancer [BMJ]
卷期号:12 (9): e009348-e009348 被引量:10
标识
DOI:10.1136/jitc-2024-009348
摘要

Objectives Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy response image biomarkers. Methods This study retrospectively obtained non-contrast enhanced and contrast enhancedbubu CT scans of patients with NSCLC who underwent surgery after receiving neoadjuvant immunochemotherapy at multiple centers between August 2019 and February 2023. Deep learning features were extracted from both non-contrast enhanced and contrast enhanced CT scans to construct the predictive models (LUNAI-uCT model and LUNAI-eCT model), respectively. After the feature fusion of these two types of features, a fused model (LUNAI-fCT model) was constructed. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. SHapley Additive exPlanations analysis was used to quantify the impact of CT imaging features on model prediction. To gain insights into how our model makes predictions, we employed Gradient-weighted Class Activation Mapping to generate saliency heatmaps. Results The training and validation datasets included 113 patients from Center A at the 8:2 ratio, and the test dataset included 112 patients (Center B n=73, Center C n=20, Center D n=19). In the test dataset, the LUNAI-uCT, LUNAI-eCT, and LUNAI-fCT models achieved AUCs of 0.762 (95% CI 0.654 to 0.791), 0.797 (95% CI 0.724 to 0.844), and 0.866 (95% CI 0.821 to 0.883), respectively. Conclusions By extracting deep learning features from contrast enhanced and non-contrast enhanced CT, we constructed the LUNAI-fCT model as an imaging biomarker, which can non-invasively predict pathological complete response in neoadjuvant immunochemotherapy for NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwjy完成签到,获得积分10
刚刚
所所应助聪慧的鹤轩采纳,获得10
1秒前
Cher1she发布了新的文献求助10
3秒前
我是老大应助专一的易巧采纳,获得10
3秒前
4秒前
4秒前
6秒前
范白白完成签到 ,获得积分10
7秒前
7秒前
lly2021完成签到,获得积分10
7秒前
胖丹完成签到,获得积分10
10秒前
10秒前
天天快乐应助轩辕冰夏采纳,获得10
11秒前
12秒前
13秒前
13秒前
13秒前
欢檬应助和谐的阁采纳,获得50
13秒前
陈麦子发布了新的文献求助10
15秒前
15秒前
Cher1she完成签到,获得积分10
16秒前
庾稀发布了新的文献求助10
16秒前
斯文败类应助小次之山采纳,获得10
17秒前
研友_VZG7GZ应助pdx666采纳,获得10
18秒前
完美世界应助祎橘采纳,获得10
19秒前
诗梦完成签到,获得积分10
19秒前
大模型应助善良的冥茗采纳,获得10
20秒前
希望天下0贩的0应助Pikno123采纳,获得10
21秒前
23秒前
23秒前
Rondab应助科研达人采纳,获得10
23秒前
陈麦子完成签到,获得积分10
24秒前
25秒前
酷酷小子发布了新的文献求助10
26秒前
27秒前
1364135702完成签到 ,获得积分10
29秒前
王盼盼发布了新的文献求助10
30秒前
30秒前
KimJongUn发布了新的文献求助10
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629