Wireless acoustic energy harvesting through an air-water metasurface with dual coupling resonators

谐振器 声学 能量收集 联轴节(管道) 传输(电信) 声阻抗 无线 接口(物质) 能量(信号处理) 水下 声波 电阻抗 纳米发生器 物理 电信 材料科学 光电子学 计算机科学 电气工程 压电 超声波传感器 工程类 地质学 量子力学 冶金 海洋学 毛细管数 毛细管作用 复合材料
作者
Zhiwen Ren,Hao‐Wen Dong,Shengdong Zhao,Mingji Chen,Daining Fang
出处
期刊:Physical review applied [American Physical Society]
卷期号:22 (2) 被引量:3
标识
DOI:10.1103/physrevapplied.22.024023
摘要

Extremely large acoustic impedance mismatching generates a natural acoustic barrier at the air-water interface, resulting in significantly impeding bidirectional acoustic wave propagation across the heterogeneous interface. Here, an air-water metasurface with dual coupling resonators is proposed to enhance the acoustic transmission at the air-water interface, which facilitates the implementation of wireless harvesting for acoustic energy across the heterogeneous interface. A theoretical model is established and derived to obtain the analytical expressions between acoustic energy transmission and microstructural geometric parameters. The theoretical analysis reveals that the highly efficient energy transmission mechanism depends on the impedance coupling effect of the resonant cavities for nonresonance modes. The enhanced bidirectional acoustic energy transmission at the air-water interface is investigated and verified numerically and experimentally, and the maximum enhancement of energy transmission is measured to be approximately 19 dB at the peak frequency. Finally, wireless acoustic energy harvesting across the air-water interface is implemented experimentally by integrating the designed metasurface with a contact-separation-mode triboelectric nanogenerator, and the captured energy from the waves effectively operates six LED lamps. The proposed ``bottom-up'' design methodology of air-water wave energy harvesting based on an acoustic-metasurface-embedded system opens promising routes for underwater wireless energy-supplying platforms and medical ultrasound therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
lmd完成签到,获得积分10
3秒前
穆思柔完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
4秒前
Trends完成签到 ,获得积分10
4秒前
5秒前
王小玮完成签到,获得积分10
5秒前
5秒前
zhouyin2发布了新的文献求助10
5秒前
小茗同学发布了新的文献求助10
6秒前
wanci应助冷静新烟采纳,获得10
6秒前
7秒前
嗷嗷发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
科研通AI2S应助今晚八点睡采纳,获得10
8秒前
Henry完成签到,获得积分10
8秒前
Ava应助极品小亮采纳,获得10
9秒前
hute发布了新的文献求助10
10秒前
酷波er应助zhouyin2采纳,获得10
10秒前
嘿嘿发布了新的文献求助10
10秒前
10秒前
ZZQ发布了新的文献求助10
10秒前
小马甲应助啦啦采纳,获得10
10秒前
10秒前
11秒前
小陆完成签到 ,获得积分10
11秒前
13秒前
li完成签到,获得积分10
13秒前
考拉完成签到,获得积分10
13秒前
14秒前
16秒前
li发布了新的文献求助10
16秒前
dawn发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
我是老大应助dayuernihao采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530913
求助须知:如何正确求助?哪些是违规求助? 4619898
关于积分的说明 14570675
捐赠科研通 4559413
什么是DOI,文献DOI怎么找? 2498391
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913