清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modelling energy partition patterns of growing pigs fed diets with different net energy levels based on machine learning

净能量 分拆(数论) 能量(信号处理) 动物科学 生物 统计 数学 组合数学
作者
Yuansen Yang,Qile Hu,Li Wang,Lu Wang,Nuo Xiao,Xinwei Dong,Shijie Liu,Changhua Lai,Shuai Zhang
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skae220
摘要

The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Twenty-four Duroc × Landrace × Yorkshire crossbred barrows with an initial body weight of 24.90 ± 0.46 kg were randomly assigned to 3 dietary treatments, including the low NE group (2,325 kcal/kg), the medium NE group (2,475 kcal/kg), and the high NE group (2,625 kcal/kg). The total feces and urine produced from each pig during each period were collected, to calculate the NE intake, NE retained as protein (NEp), and NE retained as lipid (NEl). A total of 240 sets of data on the energy partition patterns of each pig were collected, 75% of the data in the dataset was randomly selected as the training dataset, and the remaining 25% was set as the testing dataset. Prediction models for the NE requirement of growing pigs were developed using algorithms including multiple linear regression (MR), artificial neural networks (ANN), k-nearest neighbor (KNN), and random forest (RF), and the prediction performance of these models was compared on the testing dataset. The results showed pigs in the low NE group showed a lower average daily gain, lower average daily feed intake, lower NE intake, but greater feed conversion ratio compared to pigs in the high NE group in most growth stages. In addition, pigs in the 3 treatment groups did not show a significant difference in NEp in all growth stages, while pigs in the medium and high NE groups showed greater NEl compared to pig in the low NE group in growth stages from 25 to 55 kg (P < 0.05). Among the developed prediction models for NE intake, NEp, and NEl, the ANN models demonstrated the most optimal prediction performance with the smallest root mean square error (RMSE) and the largest R2, while the RF models had the worst prediction performance with the largest RMSE and the smallest R2. In conclusion, diets with varied NE concentrations within a certain range did not affect the NEp of growing pigs, and the models developed with the ANN algorithm could accurately achieve the NE requirement prediction in growing pigs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助所谓采纳,获得10
22秒前
lyj完成签到 ,获得积分0
27秒前
28秒前
量子星尘发布了新的文献求助10
31秒前
纤指细轻捻完成签到 ,获得积分10
35秒前
fx完成签到,获得积分10
56秒前
火之高兴完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Kevin完成签到,获得积分10
1分钟前
YuxinChen完成签到 ,获得积分10
1分钟前
guo发布了新的文献求助10
1分钟前
siiifang完成签到 ,获得积分10
1分钟前
所所应助guo采纳,获得10
2分钟前
英姑应助guo采纳,获得10
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ivyjianjie发布了新的文献求助10
2分钟前
lod完成签到,获得积分10
3分钟前
minnie完成签到 ,获得积分10
3分钟前
3分钟前
guo发布了新的文献求助10
3分钟前
4分钟前
等等驳回了Owen应助
4分钟前
张勇发布了新的文献求助10
5分钟前
ranj完成签到,获得积分10
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
allrubbish完成签到,获得积分10
5分钟前
5分钟前
汉堡包应助张勇采纳,获得10
5分钟前
5分钟前
等等发布了新的文献求助50
5分钟前
guo发布了新的文献求助10
6分钟前
桐桐应助ivyjianjie采纳,获得10
6分钟前
guo完成签到,获得积分10
6分钟前
6分钟前
所谓发布了新的文献求助10
6分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603408
求助须知:如何正确求助?哪些是违规求助? 4688392
关于积分的说明 14853592
捐赠科研通 4690914
什么是DOI,文献DOI怎么找? 2540679
邀请新用户注册赠送积分活动 1507015
关于科研通互助平台的介绍 1471640