Modelling energy partition patterns of growing pigs fed diets with different net energy levels based on machine learning

净能量 分拆(数论) 能量(信号处理) 动物科学 生物 统计 数学 组合数学
作者
Yuansen Yang,Qile Hu,Li Wang,Lu Wang,Nuo Xiao,Xinwei Dong,Shijie Liu,Changhua Lai,Shuai Zhang
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skae220
摘要

The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Twenty-four Duroc × Landrace × Yorkshire crossbred barrows with an initial body weight of 24.90 ± 0.46 kg were randomly assigned to 3 dietary treatments, including the low NE group (2,325 kcal/kg), the medium NE group (2,475 kcal/kg), and the high NE group (2,625 kcal/kg). The total feces and urine produced from each pig during each period were collected, to calculate the NE intake, NE retained as protein (NEp), and NE retained as lipid (NEl). A total of 240 sets of data on the energy partition patterns of each pig were collected, 75% of the data in the dataset was randomly selected as the training dataset, and the remaining 25% was set as the testing dataset. Prediction models for the NE requirement of growing pigs were developed using algorithms including multiple linear regression (MR), artificial neural networks (ANN), k-nearest neighbor (KNN), and random forest (RF), and the prediction performance of these models was compared on the testing dataset. The results showed pigs in the low NE group showed a lower average daily gain, lower average daily feed intake, lower NE intake, but greater feed conversion ratio compared to pigs in the high NE group in most growth stages. In addition, pigs in the 3 treatment groups did not show a significant difference in NEp in all growth stages, while pigs in the medium and high NE groups showed greater NEl compared to pig in the low NE group in growth stages from 25 to 55 kg (P < 0.05). Among the developed prediction models for NE intake, NEp, and NEl, the ANN models demonstrated the most optimal prediction performance with the smallest root mean square error (RMSE) and the largest R2, while the RF models had the worst prediction performance with the largest RMSE and the smallest R2. In conclusion, diets with varied NE concentrations within a certain range did not affect the NEp of growing pigs, and the models developed with the ANN algorithm could accurately achieve the NE requirement prediction in growing pigs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Violet完成签到 ,获得积分20
1秒前
2秒前
dreamboat发布了新的文献求助10
3秒前
殴打阿达完成签到,获得积分10
3秒前
丁真先生完成签到,获得积分10
3秒前
Esfuerzo完成签到 ,获得积分10
4秒前
小蒋完成签到,获得积分10
4秒前
香蕉觅云应助hh采纳,获得10
5秒前
wujuan1606完成签到 ,获得积分10
5秒前
英姑应助张桐赫采纳,获得10
7秒前
T_MC郭发布了新的文献求助10
7秒前
甲乙驾驭完成签到,获得积分10
7秒前
8秒前
8秒前
YD完成签到 ,获得积分10
10秒前
甲乙驾驭发布了新的文献求助10
10秒前
满座发布了新的文献求助10
11秒前
乐乐应助殴打阿达采纳,获得10
12秒前
Rondab应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
张易发布了新的文献求助30
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
Rondab应助科研通管家采纳,获得10
13秒前
慕青应助Uuuuuuumi采纳,获得10
15秒前
丘比特应助橙子采纳,获得10
15秒前
田様应助racill采纳,获得10
16秒前
Atom完成签到,获得积分10
19秒前
20秒前
20秒前
科研通AI2S应助皮崇知采纳,获得10
22秒前
缥缈的背包完成签到 ,获得积分10
24秒前
临澈完成签到,获得积分10
24秒前
酷波zai发布了新的文献求助10
25秒前
hzl完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999331
求助须知:如何正确求助?哪些是违规求助? 3538658
关于积分的说明 11274856
捐赠科研通 3277581
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101