亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modelling energy partition patterns of growing pigs fed diets with different net energy levels based on machine learning

净能量 分拆(数论) 能量(信号处理) 动物科学 生物 统计 数学 组合数学
作者
Yuansen Yang,Qile Hu,Li Wang,Lu Wang,Nuo Xiao,Xinwei Dong,Shijie Liu,Changhua Lai,Shuai Zhang
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skae220
摘要

The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Twenty-four Duroc × Landrace × Yorkshire crossbred barrows with an initial body weight of 24.90 ± 0.46 kg were randomly assigned to 3 dietary treatments, including the low NE group (2,325 kcal/kg), the medium NE group (2,475 kcal/kg), and the high NE group (2,625 kcal/kg). The total feces and urine produced from each pig during each period were collected, to calculate the NE intake, NE retained as protein (NEp), and NE retained as lipid (NEl). A total of 240 sets of data on the energy partition patterns of each pig were collected, 75% of the data in the dataset was randomly selected as the training dataset, and the remaining 25% was set as the testing dataset. Prediction models for the NE requirement of growing pigs were developed using algorithms including multiple linear regression (MR), artificial neural networks (ANN), k-nearest neighbor (KNN), and random forest (RF), and the prediction performance of these models was compared on the testing dataset. The results showed pigs in the low NE group showed a lower average daily gain, lower average daily feed intake, lower NE intake, but greater feed conversion ratio compared to pigs in the high NE group in most growth stages. In addition, pigs in the 3 treatment groups did not show a significant difference in NEp in all growth stages, while pigs in the medium and high NE groups showed greater NEl compared to pig in the low NE group in growth stages from 25 to 55 kg (P < 0.05). Among the developed prediction models for NE intake, NEp, and NEl, the ANN models demonstrated the most optimal prediction performance with the smallest root mean square error (RMSE) and the largest R2, while the RF models had the worst prediction performance with the largest RMSE and the smallest R2. In conclusion, diets with varied NE concentrations within a certain range did not affect the NEp of growing pigs, and the models developed with the ANN algorithm could accurately achieve the NE requirement prediction in growing pigs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小昏完成签到,获得积分10
刚刚
敬业乐群完成签到,获得积分10
1秒前
王者归来完成签到,获得积分10
4秒前
明理的蜗牛完成签到,获得积分10
8秒前
Alex驳回了思源应助
8秒前
11秒前
12秒前
15秒前
max完成签到,获得积分10
18秒前
阳6完成签到 ,获得积分10
23秒前
32秒前
壮观沉鱼完成签到 ,获得积分10
35秒前
37秒前
mjsdx完成签到 ,获得积分10
38秒前
守一完成签到,获得积分10
43秒前
51秒前
FashionBoy应助啦啦啦就好采纳,获得10
52秒前
南江悍匪发布了新的文献求助10
55秒前
56秒前
Panther完成签到,获得积分10
58秒前
Alex发布了新的文献求助1000
1分钟前
harry发布了新的文献求助10
1分钟前
Kashing完成签到,获得积分0
1分钟前
南江悍匪完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
苹果丹烟完成签到 ,获得积分10
1分钟前
安渝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
巫马嫣然完成签到,获得积分10
1分钟前
kk_1315完成签到,获得积分10
1分钟前
方1111完成签到,获得积分10
1分钟前
巫马嫣然发布了新的文献求助10
1分钟前
Omni完成签到,获得积分10
1分钟前
方1111发布了新的文献求助30
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666