Modelling energy partition patterns of growing pigs fed diets with different net energy levels based on machine learning

净能量 分拆(数论) 能量(信号处理) 动物科学 生物 统计 数学 组合数学
作者
Yuansen Yang,Qile Hu,Li Wang,Lu Wang,Nuo Xiao,Xinwei Dong,Shijie Liu,Changhua Lai,Shuai Zhang
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:102
标识
DOI:10.1093/jas/skae220
摘要

The objectives of this study were to evaluate the energy partition patterns of growing pigs fed diets with different net energy (NE) levels based on machine learning methods, and to develop prediction models for the NE requirement of growing pigs. Twenty-four Duroc × Landrace × Yorkshire crossbred barrows with an initial body weight of 24.90 ± 0.46 kg were randomly assigned to 3 dietary treatments, including the low NE group (2,325 kcal/kg), the medium NE group (2,475 kcal/kg), and the high NE group (2,625 kcal/kg). The total feces and urine produced from each pig during each period were collected, to calculate the NE intake, NE retained as protein (NEp), and NE retained as lipid (NEl). A total of 240 sets of data on the energy partition patterns of each pig were collected, 75% of the data in the dataset was randomly selected as the training dataset, and the remaining 25% was set as the testing dataset. Prediction models for the NE requirement of growing pigs were developed using algorithms including multiple linear regression (MR), artificial neural networks (ANN), k-nearest neighbor (KNN), and random forest (RF), and the prediction performance of these models was compared on the testing dataset. The results showed pigs in the low NE group showed a lower average daily gain, lower average daily feed intake, lower NE intake, but greater feed conversion ratio compared to pigs in the high NE group in most growth stages. In addition, pigs in the 3 treatment groups did not show a significant difference in NEp in all growth stages, while pigs in the medium and high NE groups showed greater NEl compared to pig in the low NE group in growth stages from 25 to 55 kg (P < 0.05). Among the developed prediction models for NE intake, NEp, and NEl, the ANN models demonstrated the most optimal prediction performance with the smallest root mean square error (RMSE) and the largest R2, while the RF models had the worst prediction performance with the largest RMSE and the smallest R2. In conclusion, diets with varied NE concentrations within a certain range did not affect the NEp of growing pigs, and the models developed with the ANN algorithm could accurately achieve the NE requirement prediction in growing pigs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助Cold-Drink-Shop采纳,获得10
刚刚
太阳完成签到 ,获得积分10
2秒前
blueblue不熬夜完成签到,获得积分10
2秒前
3秒前
4秒前
漂亮土豆完成签到,获得积分10
5秒前
疯狂的向日葵完成签到,获得积分10
6秒前
baby的跑男完成签到,获得积分10
7秒前
甩看文献完成签到,获得积分10
8秒前
卡卡完成签到,获得积分10
9秒前
royan2发布了新的文献求助10
9秒前
嘟嘟豆806完成签到 ,获得积分10
10秒前
甩看文献发布了新的文献求助10
10秒前
Cold-Drink-Shop完成签到,获得积分10
12秒前
Sci完成签到,获得积分10
13秒前
卡卡发布了新的文献求助20
13秒前
15秒前
Orange应助科研通管家采纳,获得10
16秒前
Barton应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
Jun应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
oceanao应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得30
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
17秒前
Akim应助科研通管家采纳,获得10
17秒前
17秒前
tramp应助科研通管家采纳,获得50
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
优雅的平安完成签到 ,获得积分10
18秒前
懵懂的芫发布了新的文献求助10
19秒前
19秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388