Improving Quantitative Analysis with Cross Instrument-Sparse Bayesian Learning (CI-SBL) Raman Spectroscopy Analysis Algorithm

拉曼光谱 化学 光谱学 贝叶斯概率 分析化学(期刊) 稳健性(进化) 定性分析 定量分析(化学) 主成分分析 算法 人工智能 光学 计算机科学 色谱法 定性研究 物理 量子力学 社会科学 生物化学 社会学 基因
作者
Jinglei Zhai,Zilong Wang,Xin Chen,Yunfeng Li,Tengyu Wu,Biao Sun,Pei Liang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (31): 12883-12891
标识
DOI:10.1021/acs.analchem.4c02659
摘要

Qualitative and quantitative analysis of Raman spectroscopy is a widely used nondestructive analytical technique in many fields. It utilizes the Raman scattering effect of lasers to obtain molecular vibration information on samples. By comparison with the Raman spectra of standard substances, qualitative and quantitative analyses can be achieved on unknown samples. However, current Raman spectroscopy analysis algorithms still have many drawbacks. They struggled to handle quantitative analysis between different instruments. Their prediction accuracy for concentration is generally low, with poor robustness. Therefore, this study addresses these deficiencies by designing the cross instrument-sparse Bayesian learning (CI-SBL) Raman spectroscopy analysis algorithm. CI-SBL can facilitate spectroscopic analysis between different instruments through the cross instrument module. CI-SBL converts data from portable instruments into data from scientific instruments, with high similarity between the converted spectrum and the spectrum from the scientific instruments reaching 98.6%. The similarity between the raw portable instrument spectrum and the scientific instrument spectrum is often lower than 90%. The cross instrument effect of the CI-SBL is remarkable. Moreover, CI-SBL employs sparse Bayesian learning (SBL) as the core module for analysis. Through multiple iterations, the SBL algorithm effectively identified various components within mixtures. In experiments, CI-SBL can achieve a qualitative accuracy of 100% for the majority of binary and multicomponent mixtures. On the other hand, the previous Raman spectroscopy analysis algorithms predominantly yield a qualitative accuracy below 80% for the same data. Additionally, CI-SBL incorporates a quantitative module to calculate the concentration of each component within the mixed samples. In the experiment, the quantification error for all substances was below 3%, with the majority of the substances exhibiting an error of approximately 1%. These experimental results illustrate that CI-SBL significantly enhances the accuracy of qualitative judgment of mixture spectra and the prediction of mixture concentrations compared with previous Raman spectroscopy analysis algorithms. Furthermore, the cross instrument module of CI-SBL allows for a flexible handling of data acquired from different instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栖枝完成签到 ,获得积分10
刚刚
摔碎玻璃瓶完成签到,获得积分10
刚刚
maizi应助科研通管家采纳,获得10
1秒前
arabidopsis应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
蔺景轩完成签到 ,获得积分10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
LEO完成签到 ,获得积分10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
arabidopsis应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
arabidopsis应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
yyyyyyyr发布了新的文献求助10
2秒前
忧虑的以菱完成签到,获得积分10
2秒前
lz发布了新的文献求助10
3秒前
YONG完成签到,获得积分10
4秒前
tabblk完成签到 ,获得积分10
4秒前
可爱的哈密瓜完成签到,获得积分10
5秒前
CodeCraft应助初夏采纳,获得10
6秒前
7秒前
一一完成签到,获得积分20
7秒前
科研通AI6应助信号灯采纳,获得10
7秒前
泥娃娃完成签到,获得积分10
8秒前
10秒前
10秒前
ikutovaya完成签到,获得积分10
11秒前
hh发布了新的文献求助10
11秒前
WALLE完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373872
求助须知:如何正确求助?哪些是违规求助? 4499905
关于积分的说明 14007520
捐赠科研通 4406884
什么是DOI,文献DOI怎么找? 2420755
邀请新用户注册赠送积分活动 1413471
关于科研通互助平台的介绍 1390076