Improving Quantitative Analysis with Cross Instrument-Sparse Bayesian Learning (CI-SBL) Raman Spectroscopy Analysis Algorithm

拉曼光谱 化学 光谱学 贝叶斯概率 分析化学(期刊) 稳健性(进化) 定性分析 定量分析(化学) 主成分分析 算法 人工智能 光学 计算机科学 色谱法 定性研究 物理 量子力学 生物化学 基因 社会学 社会科学
作者
Junzhi Zhai,Zilong Wang,Xin Chen,Yunfeng Li,Tengyu Wu,Biao Sun,Pei Liang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (31): 12883-12891
标识
DOI:10.1021/acs.analchem.4c02659
摘要

Qualitative and quantitative analysis of Raman spectroscopy is a widely used nondestructive analytical technique in many fields. It utilizes the Raman scattering effect of lasers to obtain molecular vibration information on samples. By comparison with the Raman spectra of standard substances, qualitative and quantitative analyses can be achieved on unknown samples. However, current Raman spectroscopy analysis algorithms still have many drawbacks. They struggled to handle quantitative analysis between different instruments. Their prediction accuracy for concentration is generally low, with poor robustness. Therefore, this study addresses these deficiencies by designing the cross instrument-sparse Bayesian learning (CI-SBL) Raman spectroscopy analysis algorithm. CI-SBL can facilitate spectroscopic analysis between different instruments through the cross instrument module. CI-SBL converts data from portable instruments into data from scientific instruments, with high similarity between the converted spectrum and the spectrum from the scientific instruments reaching 98.6%. The similarity between the raw portable instrument spectrum and the scientific instrument spectrum is often lower than 90%. The cross instrument effect of the CI-SBL is remarkable. Moreover, CI-SBL employs sparse Bayesian learning (SBL) as the core module for analysis. Through multiple iterations, the SBL algorithm effectively identified various components within mixtures. In experiments, CI-SBL can achieve a qualitative accuracy of 100% for the majority of binary and multicomponent mixtures. On the other hand, the previous Raman spectroscopy analysis algorithms predominantly yield a qualitative accuracy below 80% for the same data. Additionally, CI-SBL incorporates a quantitative module to calculate the concentration of each component within the mixed samples. In the experiment, the quantification error for all substances was below 3%, with the majority of the substances exhibiting an error of approximately 1%. These experimental results illustrate that CI-SBL significantly enhances the accuracy of qualitative judgment of mixture spectra and the prediction of mixture concentrations compared with previous Raman spectroscopy analysis algorithms. Furthermore, the cross instrument module of CI-SBL allows for a flexible handling of data acquired from different instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
zyw完成签到,获得积分10
3秒前
石文完成签到,获得积分10
4秒前
养恩完成签到,获得积分10
4秒前
XZXZJ完成签到,获得积分10
4秒前
jie发布了新的文献求助50
5秒前
chenzq完成签到,获得积分10
5秒前
6秒前
7秒前
踏实的之瑶完成签到,获得积分10
7秒前
haixia发布了新的文献求助10
8秒前
zyw发布了新的文献求助10
9秒前
白柏完成签到,获得积分10
10秒前
ggn发布了新的文献求助10
10秒前
NCNST-shi发布了新的文献求助10
12秒前
14秒前
Jia77发布了新的文献求助10
16秒前
16秒前
小咸鱼完成签到 ,获得积分10
17秒前
17秒前
17秒前
NexusExplorer应助haixia采纳,获得10
17秒前
slin_sjtu发布了新的文献求助10
18秒前
18秒前
希望天下0贩的0应助白柏采纳,获得10
19秒前
碧蓝问安发布了新的文献求助30
19秒前
乐乐乐乐乐乐应助zzz采纳,获得30
19秒前
20秒前
21秒前
自信的不悔完成签到,获得积分10
22秒前
22秒前
彭凯发布了新的文献求助10
23秒前
隐形曼青应助啊锤你头采纳,获得10
23秒前
zpp发布了新的文献求助10
23秒前
张晓芳完成签到,获得积分10
25秒前
25秒前
斯文妙梦完成签到,获得积分10
26秒前
27秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329637
求助须知:如何正确求助?哪些是违规求助? 2959215
关于积分的说明 8594828
捐赠科研通 2637692
什么是DOI,文献DOI怎么找? 1443719
科研通“疑难数据库(出版商)”最低求助积分说明 668843
邀请新用户注册赠送积分活动 656278