亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving Quantitative Analysis with Cross Instrument-Sparse Bayesian Learning (CI-SBL) Raman Spectroscopy Analysis Algorithm

拉曼光谱 化学 光谱学 贝叶斯概率 分析化学(期刊) 稳健性(进化) 定性分析 定量分析(化学) 主成分分析 算法 人工智能 光学 计算机科学 色谱法 定性研究 物理 量子力学 社会科学 生物化学 社会学 基因
作者
Jinglei Zhai,Zilong Wang,Xin Chen,Yunfeng Li,Tengyu Wu,Biao Sun,Pei Liang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (31): 12883-12891
标识
DOI:10.1021/acs.analchem.4c02659
摘要

Qualitative and quantitative analysis of Raman spectroscopy is a widely used nondestructive analytical technique in many fields. It utilizes the Raman scattering effect of lasers to obtain molecular vibration information on samples. By comparison with the Raman spectra of standard substances, qualitative and quantitative analyses can be achieved on unknown samples. However, current Raman spectroscopy analysis algorithms still have many drawbacks. They struggled to handle quantitative analysis between different instruments. Their prediction accuracy for concentration is generally low, with poor robustness. Therefore, this study addresses these deficiencies by designing the cross instrument-sparse Bayesian learning (CI-SBL) Raman spectroscopy analysis algorithm. CI-SBL can facilitate spectroscopic analysis between different instruments through the cross instrument module. CI-SBL converts data from portable instruments into data from scientific instruments, with high similarity between the converted spectrum and the spectrum from the scientific instruments reaching 98.6%. The similarity between the raw portable instrument spectrum and the scientific instrument spectrum is often lower than 90%. The cross instrument effect of the CI-SBL is remarkable. Moreover, CI-SBL employs sparse Bayesian learning (SBL) as the core module for analysis. Through multiple iterations, the SBL algorithm effectively identified various components within mixtures. In experiments, CI-SBL can achieve a qualitative accuracy of 100% for the majority of binary and multicomponent mixtures. On the other hand, the previous Raman spectroscopy analysis algorithms predominantly yield a qualitative accuracy below 80% for the same data. Additionally, CI-SBL incorporates a quantitative module to calculate the concentration of each component within the mixed samples. In the experiment, the quantification error for all substances was below 3%, with the majority of the substances exhibiting an error of approximately 1%. These experimental results illustrate that CI-SBL significantly enhances the accuracy of qualitative judgment of mixture spectra and the prediction of mixture concentrations compared with previous Raman spectroscopy analysis algorithms. Furthermore, the cross instrument module of CI-SBL allows for a flexible handling of data acquired from different instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
4秒前
钱都来发布了新的文献求助10
5秒前
huhdcid发布了新的文献求助30
8秒前
XWH完成签到,获得积分20
8秒前
9秒前
情怀应助羊念烟采纳,获得10
11秒前
12秒前
完美世界应助范小楠采纳,获得10
13秒前
皮皮发布了新的文献求助10
15秒前
小青椒应助DragonAca采纳,获得30
15秒前
我行我素发布了新的文献求助10
16秒前
喜悦的小土豆完成签到 ,获得积分10
17秒前
19秒前
19秒前
22秒前
羊念烟发布了新的文献求助10
24秒前
霹雳侠发布了新的文献求助10
27秒前
马潇涵发布了新的文献求助10
29秒前
我行我素完成签到,获得积分10
30秒前
乌龟完成签到,获得积分10
31秒前
33秒前
35秒前
37秒前
可爱彩虹发布了新的文献求助20
38秒前
明理的蜗牛完成签到,获得积分10
41秒前
Accept发布了新的文献求助10
42秒前
Tumumu完成签到,获得积分10
44秒前
马潇涵完成签到,获得积分10
45秒前
柔弱的绿竹完成签到,获得积分20
45秒前
无尘完成签到 ,获得积分10
46秒前
Accept完成签到,获得积分20
47秒前
小狗没烦恼完成签到 ,获得积分10
48秒前
所所应助酷酷的康乃馨采纳,获得10
49秒前
ZXY关注了科研通微信公众号
50秒前
研友_VZG7GZ应助细心的雪晴采纳,获得10
1分钟前
七慕凉应助bb采纳,获得10
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
ZXY发布了新的文献求助10
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
huhdcid发布了新的文献求助30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634535
捐赠科研通 4575773
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456366