Improving Quantitative Analysis with Cross Instrument-Sparse Bayesian Learning (CI-SBL) Raman Spectroscopy Analysis Algorithm

拉曼光谱 化学 光谱学 贝叶斯概率 分析化学(期刊) 稳健性(进化) 定性分析 定量分析(化学) 主成分分析 算法 人工智能 光学 计算机科学 色谱法 定性研究 物理 量子力学 生物化学 基因 社会学 社会科学
作者
Jinglei Zhai,Zilong Wang,Xin Chen,Yunfeng Li,Tengyu Wu,Biao Sun,Pei Liang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (31): 12883-12891
标识
DOI:10.1021/acs.analchem.4c02659
摘要

Qualitative and quantitative analysis of Raman spectroscopy is a widely used nondestructive analytical technique in many fields. It utilizes the Raman scattering effect of lasers to obtain molecular vibration information on samples. By comparison with the Raman spectra of standard substances, qualitative and quantitative analyses can be achieved on unknown samples. However, current Raman spectroscopy analysis algorithms still have many drawbacks. They struggled to handle quantitative analysis between different instruments. Their prediction accuracy for concentration is generally low, with poor robustness. Therefore, this study addresses these deficiencies by designing the cross instrument-sparse Bayesian learning (CI-SBL) Raman spectroscopy analysis algorithm. CI-SBL can facilitate spectroscopic analysis between different instruments through the cross instrument module. CI-SBL converts data from portable instruments into data from scientific instruments, with high similarity between the converted spectrum and the spectrum from the scientific instruments reaching 98.6%. The similarity between the raw portable instrument spectrum and the scientific instrument spectrum is often lower than 90%. The cross instrument effect of the CI-SBL is remarkable. Moreover, CI-SBL employs sparse Bayesian learning (SBL) as the core module for analysis. Through multiple iterations, the SBL algorithm effectively identified various components within mixtures. In experiments, CI-SBL can achieve a qualitative accuracy of 100% for the majority of binary and multicomponent mixtures. On the other hand, the previous Raman spectroscopy analysis algorithms predominantly yield a qualitative accuracy below 80% for the same data. Additionally, CI-SBL incorporates a quantitative module to calculate the concentration of each component within the mixed samples. In the experiment, the quantification error for all substances was below 3%, with the majority of the substances exhibiting an error of approximately 1%. These experimental results illustrate that CI-SBL significantly enhances the accuracy of qualitative judgment of mixture spectra and the prediction of mixture concentrations compared with previous Raman spectroscopy analysis algorithms. Furthermore, the cross instrument module of CI-SBL allows for a flexible handling of data acquired from different instruments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助xixi采纳,获得10
刚刚
陈一发布了新的文献求助10
刚刚
和光同尘完成签到,获得积分10
1秒前
Hhong完成签到,获得积分10
1秒前
2秒前
bc完成签到,获得积分10
2秒前
斯文败类应助忆修采纳,获得10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
平淡黑裤完成签到,获得积分20
4秒前
ZXDDDD完成签到,获得积分10
4秒前
ixueyi完成签到,获得积分10
4秒前
lst完成签到,获得积分10
4秒前
曹孟德完成签到,获得积分10
5秒前
科研民工完成签到,获得积分10
6秒前
平常的梦完成签到,获得积分10
6秒前
6秒前
Sheryl发布了新的文献求助10
7秒前
7秒前
Atari完成签到,获得积分10
7秒前
8秒前
gy发布了新的文献求助10
8秒前
彭于晏应助出其东门采纳,获得10
8秒前
jiusi发布了新的文献求助10
8秒前
2012csc完成签到 ,获得积分0
9秒前
MrX完成签到,获得积分10
9秒前
9秒前
10秒前
平淡黑裤发布了新的文献求助10
10秒前
zhuan完成签到,获得积分10
11秒前
Feegood完成签到,获得积分10
11秒前
ggxiang1989完成签到,获得积分10
12秒前
12秒前
药007完成签到,获得积分10
13秒前
wrj发布了新的文献求助10
13秒前
13秒前
酱子完成签到 ,获得积分10
13秒前
打打应助爱上学的小金采纳,获得30
13秒前
红毛兔完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773811
求助须知:如何正确求助?哪些是违规求助? 5613858
关于积分的说明 15432836
捐赠科研通 4906205
什么是DOI,文献DOI怎么找? 2640110
邀请新用户注册赠送积分活动 1587960
关于科研通互助平台的介绍 1543002