MoO2/Mo heterostructures for hydrogen evolution reaction and ammonia sensing in self-powered mode

材料科学 过电位 石墨烯 电催化剂 制氢 氨生产 催化作用 电解质 化学工程 氢燃料 纳米技术 电极 电化学 有机化学 物理化学 化学 工程类
作者
Xingwei Wang,Wenbo Zhou,Yidi Wang,Likun Gong,Xiaobin Liu,Xiaohong Zhou
出处
期刊:Nano Energy [Elsevier]
卷期号:109: 108253-108253 被引量:36
标识
DOI:10.1016/j.nanoen.2023.108253
摘要

Hydrogen production by water electrolysis and storage by in-situ ammonia synthesis using ammonia as a hydrogen carrier is a promising low-carbon cycle route to combat the energy crisis. However, achieving a high degree of integration remains challenging. We demonstrated MoO2/Mo hybrid nanoparticle-anchored reduced graphene oxide (rGO) nanosheets (MoO2/Mo-rGO) as an efficient electrocatalyst for the hydrogen evolution reaction (HER) and a gas-sensitive film for in-situ ammonia sensing. MoO2/Mo-rGO heterostructures were synthesized using a one-step high-temperature pyrolysis method, integrating the merits of a tunable electronic structure, strong electrolyte affinity, and Gibbs free energy close to 0, indicating higher intrinsic activity and rapid carrier migration. This endows MoO2/Mo-rGO with unique dual functional properties, which were confirmed through in-situ characterization, density functional theory calculations, and test results. For the HER, an overpotential of only 175 mV was required to drive 10 mA cm−2, and the current density could be maintained at ∼30 mA cm−2 for at least 25 h. Simultaneously, the ammonia sensor features a high accuracy (23.9%@15 ppm NH3) and fast response/recovery time (19 s/21 s @ 5 ppm NH3) using MoO2/Mo-rGO. This method has a much lower manufacturing cost and higher productivity than the catalytic agents and gas detectors commonly used in the industry. A self-powered mode based on a free-standing triboelectric nanogenerator to drive the HER coupled with an ammonia-sensing system demonstrates a promising avenue towards environmentally friendly clean energy production and storage, demonstrating the importance of tackling the current global energy crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英姑应助书生采纳,获得10
2秒前
科研钓鱼佬完成签到,获得积分10
3秒前
5秒前
petrichor应助C_Cppp采纳,获得10
5秒前
nan完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
勤恳的雨文完成签到,获得积分10
6秒前
木森ab发布了新的文献求助10
7秒前
paul完成签到,获得积分10
7秒前
小鞋完成签到,获得积分10
8秒前
开心青旋发布了新的文献求助10
8秒前
fztnh发布了新的文献求助10
8秒前
无名花生完成签到 ,获得积分10
8秒前
10秒前
11秒前
11秒前
杜若完成签到,获得积分10
11秒前
11秒前
木森ab完成签到,获得积分20
13秒前
paul发布了新的文献求助10
14秒前
15秒前
MEME发布了新的文献求助10
18秒前
18秒前
情怀应助LSH970829采纳,获得10
18秒前
CHINA_C13发布了新的文献求助10
21秒前
Mars发布了新的文献求助10
22秒前
哈哈哈完成签到,获得积分10
22秒前
玛卡巴卡应助平常的毛豆采纳,获得100
23秒前
默默的青旋完成签到,获得积分10
24秒前
27秒前
搜集达人应助淡淡采白采纳,获得10
27秒前
高高代珊完成签到 ,获得积分10
28秒前
gmc发布了新的文献求助10
29秒前
29秒前
30秒前
善学以致用应助Mian采纳,获得10
30秒前
学科共进发布了新的文献求助60
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824