MoO2/Mo heterostructures for hydrogen evolution reaction and ammonia sensing in self-powered mode

材料科学 过电位 石墨烯 电催化剂 制氢 氨生产 催化作用 电解质 化学工程 氢燃料 纳米技术 电极 电化学 有机化学 物理化学 化学 工程类
作者
Xingwei Wang,Wenbo Zhou,Yidi Wang,Likun Gong,Xiaobin Liu,Xiaohong Zhou
出处
期刊:Nano Energy [Elsevier]
卷期号:109: 108253-108253 被引量:56
标识
DOI:10.1016/j.nanoen.2023.108253
摘要

Hydrogen production by water electrolysis and storage by in-situ ammonia synthesis using ammonia as a hydrogen carrier is a promising low-carbon cycle route to combat the energy crisis. However, achieving a high degree of integration remains challenging. We demonstrated MoO2/Mo hybrid nanoparticle-anchored reduced graphene oxide (rGO) nanosheets (MoO2/Mo-rGO) as an efficient electrocatalyst for the hydrogen evolution reaction (HER) and a gas-sensitive film for in-situ ammonia sensing. MoO2/Mo-rGO heterostructures were synthesized using a one-step high-temperature pyrolysis method, integrating the merits of a tunable electronic structure, strong electrolyte affinity, and Gibbs free energy close to 0, indicating higher intrinsic activity and rapid carrier migration. This endows MoO2/Mo-rGO with unique dual functional properties, which were confirmed through in-situ characterization, density functional theory calculations, and test results. For the HER, an overpotential of only 175 mV was required to drive 10 mA cm−2, and the current density could be maintained at ∼30 mA cm−2 for at least 25 h. Simultaneously, the ammonia sensor features a high accuracy (23.9%@15 ppm NH3) and fast response/recovery time (19 s/21 s @ 5 ppm NH3) using MoO2/Mo-rGO. This method has a much lower manufacturing cost and higher productivity than the catalytic agents and gas detectors commonly used in the industry. A self-powered mode based on a free-standing triboelectric nanogenerator to drive the HER coupled with an ammonia-sensing system demonstrates a promising avenue towards environmentally friendly clean energy production and storage, demonstrating the importance of tackling the current global energy crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
河清海晏发布了新的文献求助10
1秒前
小蘑菇应助落寞冬日采纳,获得10
1秒前
木子发布了新的文献求助10
1秒前
1秒前
行走的土豆完成签到,获得积分10
1秒前
兰金完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
吕邓宏完成签到 ,获得积分10
2秒前
2秒前
Akim应助蚂蚁Y嘿采纳,获得10
2秒前
caicai完成签到,获得积分10
3秒前
逢场作戱__完成签到 ,获得积分10
3秒前
Jasper应助罗杰斯采纳,获得10
3秒前
3秒前
标致的之柔完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
小宇等日落完成签到,获得积分10
5秒前
研路漫漫完成签到,获得积分10
5秒前
Szw666完成签到,获得积分10
6秒前
刘宗洋完成签到,获得积分20
7秒前
英姑应助lulu采纳,获得10
7秒前
英勇的大有应助lxj采纳,获得10
7秒前
7秒前
孙元应助02采纳,获得10
7秒前
在水一方应助02采纳,获得10
7秒前
充电宝应助小管采纳,获得10
8秒前
Jasmine发布了新的文献求助10
9秒前
flyzhang20完成签到,获得积分10
9秒前
彭于晏应助黎明森采纳,获得10
9秒前
9秒前
kiminonawa应助自然代亦采纳,获得10
10秒前
君莫笑完成签到,获得积分10
10秒前
10秒前
10秒前
222666完成签到 ,获得积分10
11秒前
orixero应助河清海晏采纳,获得10
11秒前
Wuuuu完成签到 ,获得积分10
11秒前
半分糖完成签到 ,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388