清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning Approach to Support Urgent Stroke Triage Using Administrative Data and Social Determinants of Health at Hospital Presentation: Retrospective Study

急诊分诊台 冲程(发动机) 急诊科 医学 决策树 随机森林 逻辑回归 回顾性队列研究 医疗保健 临床决策支持系统 机器学习 人工智能 医疗急救 急诊医学 计算机科学 决策支持系统 护理部 外科 经济 工程类 机械工程 经济增长
作者
Min Chen,Xuan Tan,Rema Padman
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e36477-e36477 被引量:7
标识
DOI:10.2196/36477
摘要

The key to effective stroke management is timely diagnosis and triage. Machine learning (ML) methods developed to assist in detecting stroke have focused on interpreting detailed clinical data such as clinical notes and diagnostic imaging results. However, such information may not be readily available when patients are initially triaged, particularly in rural and underserved communities.This study aimed to develop an ML stroke prediction algorithm based on data widely available at the time of patients' hospital presentations and assess the added value of social determinants of health (SDoH) in stroke prediction.We conducted a retrospective study of the emergency department and hospitalization records from 2012 to 2014 from all the acute care hospitals in the state of Florida, merged with the SDoH data from the American Community Survey. A case-control design was adopted to construct stroke and stroke mimic cohorts. We compared the algorithm performance and feature importance measures of the ML models (ie, gradient boosting machine and random forest) with those of the logistic regression model based on 3 sets of predictors. To provide insights into the prediction and ultimately assist care providers in decision-making, we used TreeSHAP for tree-based ML models to explain the stroke prediction.Our analysis included 143,203 hospital visits of unique patients, and it was confirmed based on the principal diagnosis at discharge that 73% (n=104,662) of these patients had a stroke. The approach proposed in this study has high sensitivity and is particularly effective at reducing the misdiagnosis of dangerous stroke chameleons (false-negative rate <4%). ML classifiers consistently outperformed the benchmark logistic regression in all 3 input combinations. We found significant consistency across the models in the features that explain their performance. The most important features are age, the number of chronic conditions on admission, and primary payer (eg, Medicare or private insurance). Although both the individual- and community-level SDoH features helped improve the predictive performance of the models, the inclusion of the individual-level SDoH features led to a much larger improvement (area under the receiver operating characteristic curve increased from 0.694 to 0.823) than the inclusion of the community-level SDoH features (area under the receiver operating characteristic curve increased from 0.823 to 0.829).Using data widely available at the time of patients' hospital presentations, we developed a stroke prediction model with high sensitivity and reasonable specificity. The prediction algorithm uses variables that are routinely collected by providers and payers and might be useful in underresourced hospitals with limited availability of sensitive diagnostic tools or incomplete data-gathering capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁鲁完成签到,获得积分10
15秒前
有热心愿意完成签到,获得积分10
37秒前
43秒前
Heart完成签到,获得积分20
44秒前
zzhui完成签到,获得积分10
47秒前
Heart发布了新的文献求助10
49秒前
59秒前
1分钟前
Zoe完成签到 ,获得积分10
1分钟前
1分钟前
acs924发布了新的文献求助10
1分钟前
acs924完成签到,获得积分10
1分钟前
u2u2完成签到 ,获得积分10
1分钟前
桐桐应助ShawnHo采纳,获得100
2分钟前
2分钟前
LZQ发布了新的文献求助10
2分钟前
玛卡巴卡完成签到 ,获得积分10
2分钟前
聪明的云完成签到 ,获得积分10
3分钟前
修辛完成签到 ,获得积分10
3分钟前
脑洞疼应助天真咖啡豆采纳,获得10
3分钟前
LLL完成签到,获得积分10
3分钟前
土豆泥完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
桐桐应助天真咖啡豆采纳,获得10
4分钟前
方白秋完成签到,获得积分10
4分钟前
5分钟前
YuLu完成签到 ,获得积分10
5分钟前
JamesPei应助EIiyah采纳,获得10
5分钟前
侯天宇完成签到,获得积分10
5分钟前
侯天宇发布了新的文献求助10
6分钟前
奋斗的宛白完成签到 ,获得积分10
6分钟前
ming123ah完成签到,获得积分10
6分钟前
山城完成签到 ,获得积分10
6分钟前
CoCo完成签到 ,获得积分10
6分钟前
一程完成签到 ,获得积分10
6分钟前
6分钟前
EIiyah发布了新的文献求助10
6分钟前
陶醉的烤鸡应助HS采纳,获得10
7分钟前
慕青应助科研通管家采纳,获得10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655730
求助须知:如何正确求助?哪些是违规求助? 3218580
关于积分的说明 9724499
捐赠科研通 2927071
什么是DOI,文献DOI怎么找? 1603013
邀请新用户注册赠送积分活动 755904
科研通“疑难数据库(出版商)”最低求助积分说明 733617