Development and validation of a nomogram to predict the risk of surgical site infection within 1 month after transforaminal lumbar interbody fusion

列线图 医学 逻辑回归 接收机工作特性 腰椎 单变量 单变量分析 曲线下面积 多元分析 脊柱融合术 外科 多元统计 内科学 统计 数学
作者
Jiashu Lian,Yu Wang,Xin Yan,Guoting Xu,Mengxian Jia,Jiali Yang,Jinwei Ying,Honglin Teng
出处
期刊:Journal of Orthopaedic Surgery and Research [Springer Nature]
卷期号:18 (1) 被引量:3
标识
DOI:10.1186/s13018-023-03550-w
摘要

Surgical site infection (SSI), a common serious complication within 1 month after transforaminal lumbar interbody fusion (TLIF), usually leads to poor prognosis and even death. The objective of this study is to investigate the factors related to SSI within 1 month after TLIF. We have developed a dynamic nomogram to change treatment or prevent infection based on accurate predictions.We retrospectively analyzed 383 patients who received TLIF at our institution from January 1, 2019, to June 30, 2022. The outcome variable in the current study was the occurrence of SSI within 1 month after surgery. Univariate logistic regression analysis was first performed to assess risk factors for SSI within 1 month after surgery, followed by inclusion of significant variables at P < 0.05 in multivariate logistic regression analysis. The independent risk variables were subsequently utilized to build a nomogram model. The consistency index (C-index), calibration curve and receiver operating characteristic curve were used to evaluate the performance of the model. And the decision curve analysis (DCA) was used to analyze the clinical value of the nomogram.The multivariate logistic regression models further screened for three independent influences on the occurrence of SSI after TLIF, including lumbar paraspinal (multifidus and erector spinae) muscles (LPM) fat infiltration, diabetes and surgery duration. Based on the three independent factors, a nomogram prediction model was built. The area under the curve for the nomogram including these predictors was 0.929 in both the training and validation samples. Both the training and validation samples had high levels of agreement on the calibration curves, and the nomograms C-index was 0.929 and 0.955, respectively. DCA showed that if the threshold probability was less than 0.74, it was beneficial to use this nomograph to predict the risk of SSI after TLIF. In addition, the nomogram was converted to a web-based calculator that provides a graphical representation of the probability of SSI occurring within 1 month after TLIF.A nomogram including LPM fat infiltration, surgery duration and diabetes is a promising model for predicting the risk of SSI within 1 month after TLIF. This nomogram assists clinicians in stratifying patients, hence boosting decision-making based on evidence and personalizing the best appropriate treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河qaq发布了新的文献求助10
1秒前
1秒前
1秒前
毛毛完成签到,获得积分10
2秒前
大海完成签到,获得积分10
2秒前
Xtiechui发布了新的文献求助10
2秒前
ff'f'f'f'f'f'f完成签到,获得积分10
2秒前
Hello应助小巧雪糕采纳,获得10
2秒前
2秒前
2秒前
hehe应助阿怪采纳,获得10
3秒前
我是老大应助wangshibing采纳,获得10
3秒前
3秒前
3秒前
光亮友安完成签到,获得积分10
3秒前
猪美丽发布了新的文献求助10
4秒前
闪闪的白易完成签到,获得积分20
4秒前
4秒前
明亮囧完成签到 ,获得积分10
4秒前
笨笨的黄瓜完成签到,获得积分10
4秒前
4秒前
Jasper应助YK采纳,获得10
5秒前
5秒前
6秒前
6秒前
丘比特应助小小付采纳,获得30
7秒前
义气凡阳完成签到,获得积分10
7秒前
平淡驳完成签到 ,获得积分10
7秒前
YYY完成签到,获得积分10
7秒前
枫丹白露发布了新的文献求助10
7秒前
迷你的觅云完成签到,获得积分20
7秒前
芋头cc发布了新的文献求助10
7秒前
Andychen完成签到,获得积分10
8秒前
rebeccahu发布了新的文献求助10
8秒前
小高同学发布了新的文献求助10
10秒前
xinxin完成签到,获得积分10
10秒前
Orange应助酷炫的菠萝采纳,获得10
10秒前
大牙完成签到 ,获得积分10
10秒前
张大拿应助兔兜采纳,获得20
11秒前
科研r发布了新的文献求助10
12秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122329
求助须知:如何正确求助?哪些是违规求助? 2772690
关于积分的说明 7714624
捐赠科研通 2428211
什么是DOI,文献DOI怎么找? 1289656
科研通“疑难数据库(出版商)”最低求助积分说明 621484
版权声明 600183