已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

SWSEL: Sliding Window-based Selective Ensemble Learning for class-imbalance problems

计算机科学 欠采样 滑动窗口协议 分类器(UML) 预处理器 窗口(计算) 集成学习 过采样 人工智能 支持向量机 机器学习 模式识别(心理学) 数据挖掘 计算机网络 带宽(计算) 操作系统
作者
Qi Dai,Jian‐wei Liu,Jiapeng Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 105959-105959 被引量:11
标识
DOI:10.1016/j.engappai.2023.105959
摘要

For class-imbalance problems, traditional supervised learning algorithms tend to favor majority instances (also called negative instances). Therefore, it is difficult for them to accurately identify the minority instances (also called positive instances). Ensemble learning is a common method to solve the class-imbalance problem. They build multiple classifier systems on the training dataset to improve the recognition accuracy of minority instances. Sliding window is a commonly used method for processing data stream. Few researchers have used sliding windows to select majority instances and construct ensemble learning models. Traditional ensemble learning methods use some or all of the majority instances for modeling by oversampling or undersampling. However, they also inherit the drawbacks of the preprocessing methods. Therefore, in this paper, we try to use similarity mapping to construct pseudo-sequences of majority instances. Then, according to the sliding window idea, we fully use all existing majority instances, and a novel sliding window-based selective ensemble learning method (SWSEL) is proposed to deal with the class-imbalance problem. This method uses the idea of distance alignment in multi-view alignment to align the centers of the minority instances with the majority instances, and slide to select the majority instances on the sequence of pseudo-majority instances. In addition, to prevent too many classifiers from leading to long running times, we use distance metric to select a certain number of base classifiers to build the final ensemble learning model. Extensive experimental results on various real-world datasets show that using SVM, MLP and RF as the base classifier, SWSEL achieves a statistically significant performance improvement on two evaluation metrics, AUC and G-mean, compared to state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Delight完成签到 ,获得积分0
2秒前
3秒前
3秒前
3秒前
靓丽衫完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
traveller应助科研通管家采纳,获得20
4秒前
轨迹应助科研通管家采纳,获得50
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
友好胜完成签到 ,获得积分10
6秒前
啊大大完成签到,获得积分10
7秒前
8秒前
陈欣瑶完成签到 ,获得积分10
9秒前
12秒前
wushuimei完成签到 ,获得积分10
12秒前
15秒前
查完查完挖到我完成签到,获得积分10
15秒前
16秒前
情怀应助chigga采纳,获得10
18秒前
Xieyusen发布了新的文献求助10
20秒前
优雅的帅哥完成签到 ,获得积分10
20秒前
drftgyhuij发布了新的文献求助10
21秒前
22秒前
23秒前
兼听则明完成签到,获得积分10
24秒前
科妍通AI2_1应助Qinghua采纳,获得30
25秒前
26秒前
Alan发布了新的文献求助10
26秒前
隐形便当完成签到 ,获得积分10
26秒前
yy完成签到 ,获得积分10
27秒前
江三村完成签到 ,获得积分10
28秒前
28秒前
12发布了新的文献求助10
28秒前
坐宝马吃地瓜完成签到 ,获得积分10
29秒前
Hello应助lwl采纳,获得10
29秒前
玄金道人完成签到 ,获得积分10
31秒前
zxy发布了新的文献求助10
33秒前
Leofar完成签到 ,获得积分10
34秒前
纯情的凡双完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040