SWSEL: Sliding Window-based Selective Ensemble Learning for class-imbalance problems

计算机科学 欠采样 滑动窗口协议 分类器(UML) 预处理器 窗口(计算) 集成学习 过采样 人工智能 支持向量机 机器学习 模式识别(心理学) 数据挖掘 计算机网络 带宽(计算) 操作系统
作者
Qi Dai,Jian‐wei Liu,Jiapeng Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:121: 105959-105959 被引量:11
标识
DOI:10.1016/j.engappai.2023.105959
摘要

For class-imbalance problems, traditional supervised learning algorithms tend to favor majority instances (also called negative instances). Therefore, it is difficult for them to accurately identify the minority instances (also called positive instances). Ensemble learning is a common method to solve the class-imbalance problem. They build multiple classifier systems on the training dataset to improve the recognition accuracy of minority instances. Sliding window is a commonly used method for processing data stream. Few researchers have used sliding windows to select majority instances and construct ensemble learning models. Traditional ensemble learning methods use some or all of the majority instances for modeling by oversampling or undersampling. However, they also inherit the drawbacks of the preprocessing methods. Therefore, in this paper, we try to use similarity mapping to construct pseudo-sequences of majority instances. Then, according to the sliding window idea, we fully use all existing majority instances, and a novel sliding window-based selective ensemble learning method (SWSEL) is proposed to deal with the class-imbalance problem. This method uses the idea of distance alignment in multi-view alignment to align the centers of the minority instances with the majority instances, and slide to select the majority instances on the sequence of pseudo-majority instances. In addition, to prevent too many classifiers from leading to long running times, we use distance metric to select a certain number of base classifiers to build the final ensemble learning model. Extensive experimental results on various real-world datasets show that using SVM, MLP and RF as the base classifier, SWSEL achieves a statistically significant performance improvement on two evaluation metrics, AUC and G-mean, compared to state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光可仁完成签到,获得积分10
1秒前
1秒前
wu发布了新的文献求助10
2秒前
4秒前
撖堡包完成签到 ,获得积分10
6秒前
6秒前
7秒前
Song0558完成签到,获得积分10
8秒前
9秒前
烟花应助小L采纳,获得10
10秒前
xx发布了新的文献求助10
10秒前
打打应助外向樱采纳,获得10
11秒前
我要发Nature完成签到,获得积分10
11秒前
13秒前
14秒前
15秒前
16秒前
Doris发布了新的文献求助10
17秒前
18秒前
18秒前
冷傲源智完成签到,获得积分10
19秒前
19秒前
FlyingAxe完成签到,获得积分10
19秒前
20秒前
pxwhhh完成签到,获得积分10
20秒前
21秒前
JH.Zhao完成签到,获得积分10
21秒前
22秒前
小L发布了新的文献求助10
24秒前
小滨发布了新的文献求助10
24秒前
24秒前
传奇3应助wang采纳,获得10
27秒前
27秒前
hahahahaaaa发布了新的文献求助50
28秒前
Yang发布了新的文献求助10
29秒前
JamesPei应助搞怪的甜瓜采纳,获得10
31秒前
西方印迹大王完成签到 ,获得积分10
31秒前
suki完成签到,获得积分10
32秒前
33秒前
ll发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588835
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14789060
捐赠科研通 4626566
什么是DOI,文献DOI怎么找? 2531974
邀请新用户注册赠送积分活动 1500561
关于科研通互助平台的介绍 1468343