SWSEL: Sliding Window-based Selective Ensemble Learning for class-imbalance problems

计算机科学 欠采样 滑动窗口协议 分类器(UML) 预处理器 窗口(计算) 集成学习 过采样 人工智能 支持向量机 机器学习 模式识别(心理学) 数据挖掘 计算机网络 操作系统 带宽(计算)
作者
Qi Dai,Jian‐wei Liu,Jiapeng Yang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:121: 105959-105959 被引量:11
标识
DOI:10.1016/j.engappai.2023.105959
摘要

For class-imbalance problems, traditional supervised learning algorithms tend to favor majority instances (also called negative instances). Therefore, it is difficult for them to accurately identify the minority instances (also called positive instances). Ensemble learning is a common method to solve the class-imbalance problem. They build multiple classifier systems on the training dataset to improve the recognition accuracy of minority instances. Sliding window is a commonly used method for processing data stream. Few researchers have used sliding windows to select majority instances and construct ensemble learning models. Traditional ensemble learning methods use some or all of the majority instances for modeling by oversampling or undersampling. However, they also inherit the drawbacks of the preprocessing methods. Therefore, in this paper, we try to use similarity mapping to construct pseudo-sequences of majority instances. Then, according to the sliding window idea, we fully use all existing majority instances, and a novel sliding window-based selective ensemble learning method (SWSEL) is proposed to deal with the class-imbalance problem. This method uses the idea of distance alignment in multi-view alignment to align the centers of the minority instances with the majority instances, and slide to select the majority instances on the sequence of pseudo-majority instances. In addition, to prevent too many classifiers from leading to long running times, we use distance metric to select a certain number of base classifiers to build the final ensemble learning model. Extensive experimental results on various real-world datasets show that using SVM, MLP and RF as the base classifier, SWSEL achieves a statistically significant performance improvement on two evaluation metrics, AUC and G-mean, compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
2秒前
3秒前
帅气书白完成签到,获得积分10
6秒前
bkagyin应助li采纳,获得10
6秒前
周一一完成签到,获得积分20
6秒前
温婉的靖儿完成签到,获得积分10
6秒前
7秒前
jiangjiang发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
huangdinghuang完成签到,获得积分10
9秒前
慈ci发布了新的文献求助10
12秒前
gent完成签到,获得积分10
12秒前
丘比特应助小雒雒采纳,获得10
12秒前
一只滦完成签到,获得积分10
13秒前
Almo完成签到,获得积分10
13秒前
13秒前
着急的傲菡完成签到,获得积分10
13秒前
snail完成签到,获得积分10
17秒前
罐罐完成签到,获得积分10
17秒前
17秒前
nicolaslcq完成签到,获得积分0
18秒前
zxxx完成签到,获得积分10
19秒前
19秒前
19秒前
bleem完成签到,获得积分10
20秒前
铉莉发布了新的文献求助10
21秒前
邵洋发布了新的文献求助10
23秒前
自由的蒜苗完成签到,获得积分10
23秒前
24秒前
25秒前
26秒前
小雒雒完成签到,获得积分20
28秒前
英俊的铭应助风中的宛白采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
30秒前
lwl666完成签到,获得积分10
30秒前
小雒雒发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499