Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding

脑-机接口 运动表象 计算机科学 解码方法 卷积神经网络 人工智能 深度学习 接口(物质) 特征提取 模式识别(心理学) 频道(广播) 滤波器(信号处理) 脑电图 语音识别 机器学习 计算机视觉 算法 心理学 气泡 精神科 最大气泡压力法 并行计算 计算机网络
作者
Jiaming Chen,Dan Wang,Weibo Yi,Meng Xu,Xiyue Tan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (2): 026001-026001 被引量:18
标识
DOI:10.1088/1741-2552/acbb2c
摘要

Abstract Objective. Motor Imagery Brain-Computer Interface (MI-BCI) is an active Brain-Computer Interface (BCI) paradigm focusing on the identification of motor intention, which is one of the most important non-invasive BCI paradigms. In MI-BCI studies, deep learning-based methods (especially lightweight networks) have attracted more attention in recent years, but the decoding performance still needs further improving. Approach. To solve this problem, we designed a filter bank structure with sinc-convolutional layers for spatio-temporal feature extraction of MI-electroencephalography in four motor rhythms. The Channel Self-Attention method was introduced for feature selection based on both global and local information, so as to build a model called Filter Bank Sinc-convolutional Network with Channel Self-Attention for high performance MI-decoding. Also, we proposed a data augmentation method based on multivariate empirical mode decomposition to improve the generalization capability of the model. Main results. We performed an intra-subject evaluation experiment on unseen data of three open MI datasets. The proposed method achieved mean accuracy of 78.20% (4-class scenario) on BCI Competition IV IIa, 87.34% (2-class scenario) on BCI Competition IV IIb, and 72.03% (2-class scenario) on Open Brain Machine Interface (OpenBMI) dataset, which are significantly higher than those of compared deep learning-based methods by at least 3.05% ( p = 0.0469), 3.18% ( p = 0.0371), and 2.27% ( p = 0.0024) respectively. Significance. This work provides a new option for deep learning-based MI decoding, which can be employed for building BCI systems for motor rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
coco发布了新的文献求助10
刚刚
香蕉觅云应助雪山采纳,获得10
刚刚
石头完成签到,获得积分10
刚刚
烟花应助认真的孤风采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
爱笑雨竹完成签到,获得积分10
刚刚
思源应助LaTeXer采纳,获得10
1秒前
1秒前
科研通AI6应助我爱乒乓球采纳,获得10
1秒前
2秒前
dingdingding发布了新的文献求助10
3秒前
77发布了新的文献求助10
3秒前
4秒前
害羞雨南完成签到,获得积分10
4秒前
huangxq完成签到,获得积分10
4秒前
4秒前
Akim应助淡然篮球采纳,获得10
4秒前
所所应助缥缈的青旋采纳,获得10
4秒前
科研通AI6应助徐zhipei采纳,获得30
4秒前
替罗非班发布了新的文献求助10
4秒前
myp完成签到,获得积分10
4秒前
lzx666发布了新的文献求助10
5秒前
5秒前
昱旻完成签到 ,获得积分10
5秒前
Akim应助香蕉静芙采纳,获得10
5秒前
6秒前
6秒前
昵称发布了新的文献求助10
6秒前
研友_VZG7GZ应助JI采纳,获得20
7秒前
Dean应助yydsyyd采纳,获得50
7秒前
追寻的访烟完成签到,获得积分10
7秒前
李哈哈发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
Persist完成签到,获得积分10
9秒前
在水一方应助紫罗兰花海采纳,获得10
9秒前
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437