WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image

杂草 人工智能 分割 计算机科学 运动模糊 计算机视觉 去模糊 块(置换群论) 图像分割 领域(数学) 图像处理 数学 图像(数学) 图像复原 农学 纯数学 几何学 生物
作者
Chaeyeong Yun,Yu Hwan Kim,Sungjae Lee,Su Jin Im,Kang Ryoung Park
出处
期刊:Plant phenomics [AAAS00]
卷期号:5 被引量:11
标识
DOI:10.34133/plantphenomics.0031
摘要

Automatically segmenting crops and weeds in the image input from cameras accurately is essential in various agricultural technology fields, such as herbicide spraying by farming robots based on crop and weed segmentation information. However, crop and weed images taken with a camera have motion blur due to various causes (e.g., vibration or shaking of a camera on farming robots, shaking of crops and weeds), which reduces the accuracy of crop and weed segmentation. Therefore, robust crop and weed segmentation for motion-blurred images is essential. However, previous crop and weed segmentation studies were performed without considering motion-blurred images. To solve this problem, this study proposed a new motion-blur image restoration method based on a wide receptive field attention network (WRA-Net), based on which we investigated improving crop and weed segmentation accuracy in motion-blurred images. WRA-Net comprises a main block called a lite wide receptive field attention residual block, which comprises modified depthwise separable convolutional blocks, an attention gate, and a learnable skip connection. We conducted experiments using the proposed method with 3 open databases: BoniRob, crop/weed field image, and rice seedling and weed datasets. According to the results, the crop and weed segmentation accuracy based on mean intersection over union was 0.7444, 0.7741, and 0.7149, respectively, demonstrating that this method outperformed the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Novtle12完成签到,获得积分20
刚刚
祖安诳人发布了新的文献求助10
刚刚
陶醉无敌发布了新的文献求助10
2秒前
科研狒狒发布了新的文献求助20
2秒前
nao1314关注了科研通微信公众号
2秒前
3秒前
kingwill应助Novtle12采纳,获得10
4秒前
6秒前
盷昀发布了新的文献求助10
7秒前
春国应助舒洛采纳,获得10
9秒前
showner完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
卡卡应助岳霖风采纳,获得30
13秒前
打打应助orange9采纳,获得10
14秒前
15秒前
科研通AI2S应助Nancy采纳,获得10
15秒前
盷昀完成签到,获得积分10
17秒前
在意i完成签到,获得积分10
17秒前
空白完成签到,获得积分10
18秒前
19秒前
21秒前
脑洞疼应助王宇杰采纳,获得10
22秒前
Song发布了新的文献求助10
23秒前
24秒前
Jasper应助二傻不刮痧采纳,获得10
24秒前
orange9发布了新的文献求助10
24秒前
26秒前
卡卡应助岳霖风采纳,获得30
26秒前
子车茗应助未来可以采纳,获得30
27秒前
852应助祖安诳人采纳,获得10
29秒前
领导范儿应助20001019采纳,获得10
30秒前
31秒前
yongon发布了新的文献求助10
32秒前
浙江嘉兴完成签到,获得积分10
32秒前
32秒前
FY完成签到,获得积分10
34秒前
劲秉应助时尚的水香采纳,获得10
35秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356273
求助须知:如何正确求助?哪些是违规求助? 2979823
关于积分的说明 8692252
捐赠科研通 2661384
什么是DOI,文献DOI怎么找? 1457177
科研通“疑难数据库(出版商)”最低求助积分说明 674714
邀请新用户注册赠送积分活动 665533