Characteristic evaluation via multi-sensor information fusion strategy for spherical underwater robots

惯性测量装置 障碍物 计算机科学 避障 水下 传感器融合 人工智能 机器人 计算机视觉 方向(向量空间) 实时计算 特征(语言学) 软传感器 移动机器人 过程(计算) 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Chunying Li,Shuxiang Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 199-214 被引量:18
标识
DOI:10.1016/j.inffus.2023.02.024
摘要

Currently, most of the existing fusion methods ignore the rich multi-source information of different types of sensor nodes in the underwater unknown environment, which makes it challenging for Autonomous Underwater Vehicles (AUVs) to accurately perceive the external environment and make actionable decisions. Considering the key issues such as attitude estimation, positioning and obstacle avoidance involved in performing AUV tasks, this paper proposed a Multi-Source Information Fusion (MSIF) model for Spherical Underwater Robots (SURs) we developed based on various low-cost sensors. Multi-source information from an Inertial Measurement Unit (IMU), Pressure Sensor Array (PSA), Obstacle Avoidance Sensor Array (OASA), Depth Sensor (DS), Looking-Down Camera (LDC) and Acoustic Communication System (ACS) were fused to enable SUR to obtain high-precision estimated data for attitude estimation, positioning and obstacle avoidance, etc. More precisely, according to the correlation between the sensors, the optimized model was constructed to compensate for angle errors, velocity errors, orientation errors, etc. Subsequently, a machine learning method using Back Propagation Neural Network (BPNN) was proposed to improve the accuracy and effectiveness of the MSIF model through feature selection, data training, and feature estimation, etc. Finally, a series of experiments were performed under different scenarios, such as motion and obstacle avoidance experiments. The theoretical derivation and comprehensive evaluations demonstrated the effectiveness and feasibility of the proposed model, which provided a new reference value for solving issues such as attitude estimation, positioning and obstacle avoidance of AUVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助渴望者采纳,获得10
1秒前
orixero应助糊涂的雁易采纳,获得30
2秒前
Demons发布了新的文献求助10
2秒前
3秒前
3秒前
西海焖面完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
醋醋完成签到,获得积分10
4秒前
an发布了新的文献求助10
5秒前
6秒前
qq发布了新的文献求助10
6秒前
6秒前
小蘑菇应助Nanocapsule采纳,获得10
6秒前
7秒前
CK完成签到,获得积分10
7秒前
7秒前
8秒前
Jasper应助研友_851KE8采纳,获得10
8秒前
科研通AI6应助wer采纳,获得10
9秒前
9秒前
符寄柔发布了新的文献求助10
10秒前
北北发布了新的文献求助10
11秒前
li发布了新的文献求助10
11秒前
奔流的河发布了新的文献求助10
11秒前
hfzxlzy发布了新的文献求助10
11秒前
ranjack发布了新的文献求助10
11秒前
蝈蝈完成签到,获得积分10
12秒前
张1发布了新的文献求助10
12秒前
12秒前
lxq完成签到,获得积分10
12秒前
上官若男应助兴奋平松采纳,获得10
12秒前
12秒前
WR完成签到,获得积分10
12秒前
甜蜜夜梅完成签到,获得积分10
13秒前
13秒前
哆啦十七应助活力的惜萱采纳,获得10
13秒前
AAA095完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330029
求助须知:如何正确求助?哪些是违规求助? 4469501
关于积分的说明 13909809
捐赠科研通 4362813
什么是DOI,文献DOI怎么找? 2396486
邀请新用户注册赠送积分活动 1389970
关于科研通互助平台的介绍 1360776