Characteristic evaluation via multi-sensor information fusion strategy for spherical underwater robots

惯性测量装置 障碍物 计算机科学 避障 水下 传感器融合 人工智能 机器人 计算机视觉 方向(向量空间) 实时计算 特征(语言学) 软传感器 移动机器人 过程(计算) 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Chunying Li,Shuxiang Guo
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 199-214 被引量:18
标识
DOI:10.1016/j.inffus.2023.02.024
摘要

Currently, most of the existing fusion methods ignore the rich multi-source information of different types of sensor nodes in the underwater unknown environment, which makes it challenging for Autonomous Underwater Vehicles (AUVs) to accurately perceive the external environment and make actionable decisions. Considering the key issues such as attitude estimation, positioning and obstacle avoidance involved in performing AUV tasks, this paper proposed a Multi-Source Information Fusion (MSIF) model for Spherical Underwater Robots (SURs) we developed based on various low-cost sensors. Multi-source information from an Inertial Measurement Unit (IMU), Pressure Sensor Array (PSA), Obstacle Avoidance Sensor Array (OASA), Depth Sensor (DS), Looking-Down Camera (LDC) and Acoustic Communication System (ACS) were fused to enable SUR to obtain high-precision estimated data for attitude estimation, positioning and obstacle avoidance, etc. More precisely, according to the correlation between the sensors, the optimized model was constructed to compensate for angle errors, velocity errors, orientation errors, etc. Subsequently, a machine learning method using Back Propagation Neural Network (BPNN) was proposed to improve the accuracy and effectiveness of the MSIF model through feature selection, data training, and feature estimation, etc. Finally, a series of experiments were performed under different scenarios, such as motion and obstacle avoidance experiments. The theoretical derivation and comprehensive evaluations demonstrated the effectiveness and feasibility of the proposed model, which provided a new reference value for solving issues such as attitude estimation, positioning and obstacle avoidance of AUVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助爱听歌的成仁采纳,获得10
刚刚
万能图书馆应助Master_Ye采纳,获得10
刚刚
1秒前
小土豆发布了新的文献求助10
1秒前
An发布了新的文献求助10
1秒前
顶端哥发顶刊完成签到,获得积分10
2秒前
3秒前
coco发布了新的文献求助10
3秒前
香蕉觅云应助雪山采纳,获得10
3秒前
石头完成签到,获得积分10
3秒前
烟花应助认真的孤风采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
爱笑雨竹完成签到,获得积分10
3秒前
思源应助LaTeXer采纳,获得10
4秒前
4秒前
科研通AI6应助我爱乒乓球采纳,获得10
4秒前
5秒前
dingdingding发布了新的文献求助10
6秒前
77发布了新的文献求助10
6秒前
7秒前
害羞雨南完成签到,获得积分10
7秒前
huangxq完成签到,获得积分10
7秒前
7秒前
Akim应助淡然篮球采纳,获得10
7秒前
所所应助缥缈的青旋采纳,获得10
7秒前
科研通AI6应助徐zhipei采纳,获得30
7秒前
替罗非班发布了新的文献求助10
7秒前
myp完成签到,获得积分10
7秒前
lzx666发布了新的文献求助10
8秒前
8秒前
昱旻完成签到 ,获得积分10
8秒前
Akim应助香蕉静芙采纳,获得10
8秒前
9秒前
9秒前
昵称发布了新的文献求助10
9秒前
研友_VZG7GZ应助JI采纳,获得20
10秒前
Dean应助yydsyyd采纳,获得50
10秒前
追寻的访烟完成签到,获得积分10
10秒前
李哈哈发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437