Characteristic evaluation via multi-sensor information fusion strategy for spherical underwater robots

惯性测量装置 障碍物 计算机科学 避障 水下 传感器融合 人工智能 机器人 计算机视觉 方向(向量空间) 实时计算 特征(语言学) 软传感器 移动机器人 过程(计算) 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Chunying Li,Shuxiang Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:95: 199-214 被引量:1
标识
DOI:10.1016/j.inffus.2023.02.024
摘要

Currently, most of the existing fusion methods ignore the rich multi-source information of different types of sensor nodes in the underwater unknown environment, which makes it challenging for Autonomous Underwater Vehicles (AUVs) to accurately perceive the external environment and make actionable decisions. Considering the key issues such as attitude estimation, positioning and obstacle avoidance involved in performing AUV tasks, this paper proposed a Multi-Source Information Fusion (MSIF) model for Spherical Underwater Robots (SURs) we developed based on various low-cost sensors. Multi-source information from an Inertial Measurement Unit (IMU), Pressure Sensor Array (PSA), Obstacle Avoidance Sensor Array (OASA), Depth Sensor (DS), Looking-Down Camera (LDC) and Acoustic Communication System (ACS) were fused to enable SUR to obtain high-precision estimated data for attitude estimation, positioning and obstacle avoidance, etc. More precisely, according to the correlation between the sensors, the optimized model was constructed to compensate for angle errors, velocity errors, orientation errors, etc. Subsequently, a machine learning method using Back Propagation Neural Network (BPNN) was proposed to improve the accuracy and effectiveness of the MSIF model through feature selection, data training, and feature estimation, etc. Finally, a series of experiments were performed under different scenarios, such as motion and obstacle avoidance experiments. The theoretical derivation and comprehensive evaluations demonstrated the effectiveness and feasibility of the proposed model, which provided a new reference value for solving issues such as attitude estimation, positioning and obstacle avoidance of AUVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢育龙完成签到,获得积分20
刚刚
雪飞杨完成签到 ,获得积分10
1秒前
情怀应助xiaozhuzhu采纳,获得10
1秒前
itsserene应助Tomice采纳,获得50
2秒前
淡淡菠萝发布了新的文献求助10
2秒前
Linghu完成签到,获得积分10
4秒前
5秒前
柠檬发布了新的文献求助10
5秒前
乐乐乐乐乐乐应助ZS采纳,获得10
6秒前
一把白刀完成签到 ,获得积分10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得30
7秒前
薰硝壤应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得20
7秒前
上官若男应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
无奈的冰姬完成签到 ,获得积分10
8秒前
共享精神应助YUMMY采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
薰硝壤应助科研通管家采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
www999完成签到,获得积分10
10秒前
11秒前
12秒前
个性的紫菜应助高贵季节采纳,获得10
14秒前
老肥完成签到,获得积分10
17秒前
sea发布了新的文献求助10
17秒前
19秒前
李健的小迷弟应助阜睿采纳,获得10
20秒前
Dawn完成签到,获得积分10
20秒前
吴巷玉完成签到,获得积分10
20秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194