Characteristic evaluation via multi-sensor information fusion strategy for spherical underwater robots

惯性测量装置 障碍物 计算机科学 避障 水下 传感器融合 人工智能 机器人 计算机视觉 方向(向量空间) 实时计算 特征(语言学) 软传感器 移动机器人 过程(计算) 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Chunying Li,Shuxiang Guo
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 199-214 被引量:18
标识
DOI:10.1016/j.inffus.2023.02.024
摘要

Currently, most of the existing fusion methods ignore the rich multi-source information of different types of sensor nodes in the underwater unknown environment, which makes it challenging for Autonomous Underwater Vehicles (AUVs) to accurately perceive the external environment and make actionable decisions. Considering the key issues such as attitude estimation, positioning and obstacle avoidance involved in performing AUV tasks, this paper proposed a Multi-Source Information Fusion (MSIF) model for Spherical Underwater Robots (SURs) we developed based on various low-cost sensors. Multi-source information from an Inertial Measurement Unit (IMU), Pressure Sensor Array (PSA), Obstacle Avoidance Sensor Array (OASA), Depth Sensor (DS), Looking-Down Camera (LDC) and Acoustic Communication System (ACS) were fused to enable SUR to obtain high-precision estimated data for attitude estimation, positioning and obstacle avoidance, etc. More precisely, according to the correlation between the sensors, the optimized model was constructed to compensate for angle errors, velocity errors, orientation errors, etc. Subsequently, a machine learning method using Back Propagation Neural Network (BPNN) was proposed to improve the accuracy and effectiveness of the MSIF model through feature selection, data training, and feature estimation, etc. Finally, a series of experiments were performed under different scenarios, such as motion and obstacle avoidance experiments. The theoretical derivation and comprehensive evaluations demonstrated the effectiveness and feasibility of the proposed model, which provided a new reference value for solving issues such as attitude estimation, positioning and obstacle avoidance of AUVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清爽的晓啸完成签到,获得积分10
1秒前
1秒前
墨痕发布了新的文献求助10
2秒前
马騳骉发布了新的文献求助30
2秒前
归尘发布了新的文献求助50
3秒前
Hui发布了新的文献求助10
4秒前
5秒前
5秒前
yxy完成签到,获得积分10
5秒前
头发很多发布了新的文献求助10
5秒前
yuanjingnan发布了新的文献求助10
6秒前
6秒前
笨笨沛文完成签到,获得积分10
6秒前
6秒前
牛马人生完成签到,获得积分10
6秒前
WWW完成签到,获得积分10
7秒前
Jason完成签到,获得积分10
7秒前
7秒前
7秒前
兴奋大船发布了新的文献求助10
8秒前
bingbing完成签到,获得积分20
8秒前
吨吨喝水发布了新的文献求助10
8秒前
白也完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
时尚俊驰发布了新的文献求助10
10秒前
Ava应助2333采纳,获得10
10秒前
yuanjingnan完成签到,获得积分10
11秒前
jialiu完成签到,获得积分10
11秒前
12秒前
停婷发布了新的文献求助10
13秒前
bingbing发布了新的文献求助10
13秒前
菠萝炒饭完成签到,获得积分10
14秒前
一键三连发布了新的文献求助10
14秒前
琦琦发布了新的文献求助10
15秒前
liuzengzhang666完成签到,获得积分10
15秒前
16秒前
。。。完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653