SIR: Self-Supervised Image Rectification via Seeing the Same Scene From Multiple Different Lenses

图像扭曲 人工智能 计算机科学 失真(音乐) 模式识别(心理学) 计算机视觉 透视失真 基本事实 图像(数学) 计算机网络 放大器 带宽(计算)
作者
Jinlong Fan,Jing Zhang,Dacheng Tao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 865-877 被引量:2
标识
DOI:10.1109/tip.2022.3231087
摘要

Deep learning has demonstrated its power in image rectification by leveraging the representation capacity of deep neural networks via supervised training based on a large-scale synthetic dataset. However, the model may overfit the synthetic images and generalize not well on real-world fisheye images due to the limited universality of a specific distortion model and the lack of explicitly modeling the distortion and rectification process. In this paper, we propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of a same scene from different lenses should be the same. Specifically, we devise a new network architecture with a shared encoder and several prediction heads, each of which predicts the distortion parameter of a specific distortion model. We further leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters and exploit the intra- and inter-model consistency between them during training, thereby leading to a self-supervised learning scheme without the need for ground-truth distortion parameters or normal images. Experiments on synthetic dataset and real-world fisheye images demonstrate that our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art (SOTA) methods. The proposed self-supervised method also provides a possible way to improve the universality of distortion models while keeping their self-consistency. Code and datasets will be available at https://github.com/loong8888/SIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乌鲁克发布了新的文献求助10
2秒前
好奇宝宝发布了新的文献求助10
2秒前
自由冬亦完成签到,获得积分10
3秒前
路在脚下完成签到 ,获得积分10
3秒前
科研白小白应助amit_弢采纳,获得50
7秒前
ldgsd完成签到,获得积分10
9秒前
10秒前
烟花应助熊风采纳,获得10
10秒前
11秒前
沐风发布了新的文献求助10
12秒前
XIA关闭了XIA文献求助
14秒前
Hineni完成签到,获得积分10
15秒前
SciGPT应助乌鲁克采纳,获得30
19秒前
爱上好完成签到,获得积分10
19秒前
楠木驳回了ayawbb应助
21秒前
熊风完成签到,获得积分10
23秒前
24秒前
27秒前
28秒前
馥日祎完成签到,获得积分10
30秒前
s0x0y0发布了新的文献求助10
32秒前
33秒前
caibuyaobing完成签到,获得积分10
35秒前
所所应助lzc采纳,获得10
35秒前
SciGPT应助杨捏捏采纳,获得10
37秒前
38秒前
Jiaming发布了新的文献求助10
38秒前
长歌完成签到,获得积分10
39秒前
搞怪的凡蕾完成签到,获得积分10
41秒前
s0x0y0完成签到,获得积分10
44秒前
Ava应助lalala采纳,获得10
44秒前
whyme完成签到,获得积分10
46秒前
舒窈完成签到 ,获得积分10
46秒前
Ki_Ayasato应助瘦瘦爆米花采纳,获得30
46秒前
47秒前
48秒前
浅枫完成签到 ,获得积分10
49秒前
杨捏捏发布了新的文献求助10
50秒前
50秒前
52秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461092
求助须知:如何正确求助?哪些是违规求助? 3054904
关于积分的说明 9045252
捐赠科研通 2744780
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173