已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark

涡轮机 卡尔曼滤波器 断层(地质) 水准点(测量) 风力发电 自适应神经模糊推理系统 故障检测与隔离 控制工程 工程类 计算机科学 可靠性工程 模糊逻辑 控制理论(社会学) 模糊控制系统 执行机构 人工智能 地震学 地质学 电气工程 机械工程 地理 控制(管理) 大地测量学
作者
Zakaria Zemali,Lakhmissi Cherroun,Nadji Hadroug,Ahmed Hafaifa,Abdelhamid Iratni,Obaid Alshammari,Ilhami Colak
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:205: 873-898 被引量:13
标识
DOI:10.1016/j.renene.2023.01.095
摘要

A wind turbine (WT) is an electromechanical system that often operates under a wide range of production conditions. These electrical systems are nowadays expanding rapidly, and they have considerable importance due to their efficiency as renewable energy sources. This led to proposing an innovative and efficient solution with intelligent systems to maintain and ensure the safe and stable operation of these dynamic systems. Maintenance tasks are based on the development of high-performance diagnostic tools, which consist in detecting and locating correctly and upstream the various failures affecting this wind machine. Where, the condition monitoring and supervision systems must rely on reliable fault diagnosis techniques in order to: avoid breakdowns and unscheduled shutdowns, improve their operation, and increase their energetic performances. In order to ensure adequate maintenance actions for the wind system, the purpose of this article is to propose and develop a robust and intelligent fault diagnosis structure. In this work, Kalman filters (KF) as state estimators are used to observe the output states of the sub-systems in order to generate the appropriate residuals evaluated by predetermined thresholds. Adaptive and hybrid network-based fuzzy inference systems (ANFIS) have been employed for the evaluation and classification stages of the detected faults to minimize the degradation of the wind turbine. All possible faults of wind turbine systems, sensors, and actuators are tested and investigated in all parts: pitch angle systems, drive, and generator with converter. The developed fault detection and identification structure are tested on a horizontal WT benchmark model using different scenarios and faults. The simulation results show the ability of the proposed and developed diagnostic methodology to detect the faults occurring efficiently and correctly in the machine. Thus, by using this robust diagnostic strategy, the condition monitoring system can maintain and ensure stable and safe operation to generate sufficient electrical power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
久怨发布了新的文献求助10
2秒前
不可以哦发布了新的文献求助10
2秒前
2秒前
xu关注了科研通微信公众号
4秒前
lyb发布了新的文献求助10
5秒前
llp完成签到,获得积分10
5秒前
Kilig发布了新的文献求助20
5秒前
昝起帆发布了新的文献求助10
6秒前
6秒前
7秒前
背后翩跹发布了新的文献求助10
10秒前
12秒前
华仔应助对方正在输入采纳,获得10
12秒前
14秒前
TanYa发布了新的文献求助10
17秒前
xiaixax发布了新的文献求助30
17秒前
安子完成签到,获得积分10
18秒前
19秒前
20秒前
20秒前
LL发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
皖枫完成签到 ,获得积分10
23秒前
思源应助wenwen采纳,获得10
23秒前
24秒前
哈哈发布了新的文献求助10
24秒前
舒心易云发布了新的文献求助10
25秒前
26秒前
Orange应助tym采纳,获得10
26秒前
27秒前
Jaime发布了新的文献求助10
27秒前
mzf发布了新的文献求助10
27秒前
刘迎完成签到 ,获得积分10
27秒前
纸皮核桃关注了科研通微信公众号
28秒前
28秒前
烟花应助限量版小祸害采纳,获得10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943657
求助须知:如何正确求助?哪些是违规求助? 4208947
关于积分的说明 13084244
捐赠科研通 3988330
什么是DOI,文献DOI怎么找? 2183567
邀请新用户注册赠送积分活动 1199094
关于科研通互助平台的介绍 1111805