Observer-based event-triggered leader-following consensus of multi-agents with generalized Lipschitz nonlinear dynamics

李普希茨连续性 控制理论(社会学) 非线性系统 解耦(概率) 指数稳定性 数学 李雅普诺夫函数 共识 Lyapunov稳定性 多智能体系统 计算机科学 数学优化 控制(管理) 控制工程 工程类 人工智能 数学分析 物理 量子力学
作者
Iqra Zulfiqar Awan,Fatima Tahir,Muhammad Rehan,Keum-Shik Hong
出处
期刊:Isa Transactions [Elsevier]
卷期号:137: 98-110 被引量:1
标识
DOI:10.1016/j.isatra.2023.02.003
摘要

This paper discusses a leader-following consensus problem for nonlinear multi-agent systems (MASs) subjected to generalized Lipschitz-type nonlinearity using output feedback. An event-triggered (ET) leader-following control scheme, based upon estimated states using observers, is proposed for efficient bandwidth utilization by application of invariant sets. Distributed observers are designed to estimate the states of the followers because actual states are not always readily available. Besides, in order to reduce unnecessary data communication among the followers, an ET strategy has been formulated which excludes Zeno behavior as well. Under this proposed scheme, sufficient conditions are formulated using Lyapunov theory. These conditions not only guarantee the asymptotic stability of estimation error, but also ensure the tracking consensus of nonlinear MASs. Further, a simple and less conservative design approach using a decoupling scheme for assuring necessity and sufficiency for the main design approach has also been explored. The decoupling scheme is similar to separation principle for linear systems. Contrary to the existing works, the nonlinear systems considered in this study cover a wide family of Lipschitz nonlinearities, including both globally and locally Lipschitz systems. Moreover, the proposed approach is more efficient in handling ET consensus. Finally, the obtained results are verified with single link robots and modified Chua's circuits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一路高飛完成签到,获得积分10
刚刚
赘婿应助andyxrz采纳,获得10
刚刚
Zhang完成签到,获得积分10
刚刚
1秒前
年轻冥茗完成签到,获得积分10
1秒前
apple发布了新的文献求助10
2秒前
CarterXD完成签到,获得积分10
2秒前
紧张的友灵完成签到,获得积分10
2秒前
SciGPT应助之仔饼采纳,获得10
3秒前
liudiqiu应助追寻的易烟采纳,获得10
3秒前
Chem is try发布了新的文献求助10
3秒前
3秒前
vsoar完成签到,获得积分10
3秒前
4秒前
5秒前
GGGGGGGGGG发布了新的文献求助10
5秒前
5秒前
打打应助hhh采纳,获得10
6秒前
抓恐龙关注了科研通微信公众号
6秒前
碳点godfather完成签到,获得积分10
6秒前
ren完成签到,获得积分20
6秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
7秒前
TG_FY完成签到,获得积分10
7秒前
7秒前
hhh完成签到,获得积分10
7秒前
JamesPei应助诗轩采纳,获得10
8秒前
TT完成签到,获得积分10
9秒前
reck发布了新的文献求助10
9秒前
10秒前
DK发布了新的文献求助10
10秒前
英俊的铭应助ren采纳,获得10
10秒前
圈圈发布了新的文献求助10
10秒前
乐乱完成签到 ,获得积分10
11秒前
415484112完成签到,获得积分10
12秒前
yinyi发布了新的文献求助10
12秒前
12秒前
赵一丁完成签到,获得积分10
13秒前
成就绮琴完成签到 ,获得积分10
13秒前
Chen完成签到,获得积分10
13秒前
huanfid完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672