已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physical-priors-guided DehazeFormer

先验概率 计算机科学 过度拟合 人工智能 变压器 机器学习 编码(集合论) 模式识别(心理学) 人工神经网络 贝叶斯概率 量子力学 物理 电压 集合(抽象数据类型) 程序设计语言
作者
Hao Zhou,Zekai Chen,Yun Liu,Yongpan Sheng,Wenqi Ren,Hailing Xiong
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:266: 110410-110410 被引量:18
标识
DOI:10.1016/j.knosys.2023.110410
摘要

Single-image dehazing is a challenging task in several machine-vision applications. Methods based on physical models and prior knowledge fail under certain conditions, resulting in defects such as color distortion. Transformer-based methods have a strong representation ability owing to their self-attention mechanism that can effectively obtain global information. However, this approach is computationally expensive, and its weak inductive bias capability increases the risk of overfitting on small-sample datasets. To address these problems, in this study, we propose a novel DehazeFormer guided by physical priors, named SwinTD-Net, which is trained according to supervised and self-supervised learning, and combines the advantages of physical priors and transformers. The proposed DehazeFormer learns features guided by physical priors, which improves the generalization ability of the network and enables it to achieve good restoration effects on both synthetic and real-world hazy images. In addition, we propose a more appropriate prior input to better use physical priors, and we design a multi-scale dark-light enhancement algorithm for image restoration post-processing, which can improve the visual perception quality for human observers while performing some local enhancements. Extensive experiments illustrate that the proposed method outperforms state-of-the-art methods. The code and pre-trained models are available to academics so that they can reproduce our results and test them (https://github.com/hocking-cloud/SwinTD_Net).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助坚定背包采纳,获得10
刚刚
小蘑菇应助LTT采纳,获得10
2秒前
4秒前
英俊的铭应助ina采纳,获得30
6秒前
狸猫不礼貌完成签到,获得积分10
7秒前
zsp完成签到,获得积分10
8秒前
DanSlobin完成签到,获得积分10
9秒前
优秀谷波发布了新的文献求助10
10秒前
可靠的寒风完成签到,获得积分10
12秒前
50g完成签到,获得积分20
12秒前
13秒前
13秒前
123完成签到,获得积分10
14秒前
16秒前
16秒前
ZJX应助米酒汤圆采纳,获得10
17秒前
灵犀发布了新的文献求助10
17秒前
余念安完成签到 ,获得积分10
18秒前
Orange应助冰冰采纳,获得10
18秒前
章鱼完成签到,获得积分10
18秒前
18秒前
orixero应助dild采纳,获得10
18秒前
19秒前
19秒前
19秒前
幽默夜阑发布了新的文献求助10
19秒前
成就若颜发布了新的文献求助10
20秒前
22秒前
科研小秦发布了新的文献求助10
22秒前
团子发布了新的文献求助10
25秒前
25秒前
Fiona发布了新的文献求助10
25秒前
喜庆完成签到 ,获得积分10
27秒前
RCRCRC1995发布了新的文献求助10
27秒前
28秒前
科研通AI6应助ws采纳,获得10
29秒前
馆长完成签到,获得积分0
30秒前
小马甲应助ll采纳,获得10
31秒前
31秒前
王槿发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252862
求助须知:如何正确求助?哪些是违规求助? 4416425
关于积分的说明 13749709
捐赠科研通 4288588
什么是DOI,文献DOI怎么找? 2352985
邀请新用户注册赠送积分活动 1349757
关于科研通互助平台的介绍 1309396