Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis

弹性成像 超声波 模态(人机交互) 乳腺癌 计算机科学 放射科 医学 人工智能 医学物理学 癌症 内科学
作者
Yao Zhao,Ting Luo,Yijie Dong,Xiaohong Jia,Yinhui Deng,Guoqing Wu,Ying Zhu,Jingwen Zhang,Juan Liu,LiChun Yang,Xiaomao Luo,Zhiyao Li,Yong Xu,Bin Hu,Yao Qi Huang,Cai Chang,Jinfeng Xu,Hui Luo,Fajin Dong,XiaoNa Xia,ChengRong Wu,Wenjia Hu,Gang Wu,Qiaoying Li,Qin Chen,Wanyue Deng,Qiongchao Jiang,YongLin Mou,HuanNan Yan,Xiaojing Xu,Hongju Yan,Ping Zhou,Yang Shao,Ligang Cui,Ping He,Linxue Qian,Jinping Liu,Liying Shi,Yanan Zhao,Yongfeng Xu,Wei Zhan,Yuanyuan Wang,Jinhua Yu,Jianqiao Zhou
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:14 (1) 被引量:8
标识
DOI:10.1038/s41467-023-36102-1
摘要

Elastography ultrasound (EUS) imaging is a vital ultrasound imaging modality. The current use of EUS faces many challenges, such as vulnerability to subjective manipulation, echo signal attenuation, and unknown risks of elastic pressure in certain delicate tissues. The hardware requirement of EUS also hinders the trend of miniaturization of ultrasound equipment. Here we show a cost-efficient solution by designing a deep neural network to synthesize virtual EUS (V-EUS) from conventional B-mode images. A total of 4580 breast tumor cases were collected from 15 medical centers, including a main cohort with 2501 cases for model establishment, an external dataset with 1730 cases and a portable dataset with 349 cases for testing. In the task of differentiating benign and malignant breast tumors, there is no significant difference between V-EUS and real EUS on high-end ultrasound, while the diagnostic performance of pocket-sized ultrasound can be improved by about 5% after V-EUS is equipped.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuan1226完成签到,获得积分10
刚刚
平常的狗应助淡然绝山采纳,获得10
1秒前
蓝色白羊完成签到,获得积分10
1秒前
2秒前
嗯哼完成签到,获得积分10
4秒前
4秒前
ccyy完成签到 ,获得积分10
5秒前
KDS发布了新的文献求助10
5秒前
橙子加油发布了新的文献求助10
5秒前
6秒前
九千七发布了新的文献求助10
6秒前
故渊完成签到,获得积分10
6秒前
万能图书馆应助过氧化氢采纳,获得20
7秒前
yan完成签到,获得积分10
8秒前
黑黑黑发布了新的文献求助10
8秒前
万能图书馆应助环游水星采纳,获得10
8秒前
阿良完成签到,获得积分10
9秒前
Joe完成签到 ,获得积分10
9秒前
8564523完成签到,获得积分10
10秒前
dandan完成签到,获得积分10
10秒前
单薄的夜南应助Connie采纳,获得10
10秒前
啦啦啦完成签到,获得积分10
10秒前
11秒前
小马过河应助小汤圆采纳,获得10
11秒前
九千七完成签到,获得积分20
11秒前
皮划艇发布了新的文献求助30
11秒前
Firenze完成签到,获得积分20
12秒前
浪浪山第一酷完成签到,获得积分10
12秒前
Dr_R完成签到,获得积分10
12秒前
KDS完成签到,获得积分10
12秒前
13秒前
13秒前
domingo发布了新的文献求助20
14秒前
Cain发布了新的文献求助10
14秒前
小马甲应助车大花采纳,获得10
14秒前
14秒前
wwz发布了新的文献求助30
15秒前
15秒前
666完成签到,获得积分10
15秒前
cheng完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650