清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning for intra-hour solar forecasting with fusion of features extracted from infrared sky images

天空 计算机科学 红外线的 融合 遥感 深度学习 计算机视觉 气象学 人工智能 模式识别(心理学) 天文 物理 地质学 语言学 哲学
作者
Guillermo Terrén-Serrano,Manel Martínez‐Ramón
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 42-61 被引量:10
标识
DOI:10.1016/j.inffus.2023.02.006
摘要

The increasing penetration of solar energy leaves power grids vulnerable to fluctuations in the solar radiation that reaches the surface of the Earth due to the projection of cloud shadows. Therefore, an intra-hour solar forecasting algorithm is necessary to reduce power instabilities caused by the impact of moving clouds on energy generation. The most accurate intra-hour solar forecasting methods apply convolutional neural networks to a series of visible light sky images. Instead, this investigation uses data acquired by a novel infrared sky imager on a solar tracker, which is capable of maintaining the Sun in the center of the images throughout the day and, at the same time, reducing the scattering effect produced by the Sun's direct radiation. In addition, infrared sky images allow the derivation and extraction of physical cloud features. The cloud dynamics are analyzed in sequences of images to compute the probability of the Sun intercepting air parcels in the sky images (i.e., voxels). The method introduced in this investigation fuses sky condition information from multiple sensors (i.e., pyranometer, sky imager, solar tracker, weather station) and feature sources using a multi-task deep learning architecture based on recurrent neural networks. The proposed deterministic and Bayesian architectures reduce computation time by avoiding convolutional filters. The proposed intra-hour solar forecasting algorithm reached a forecast skill of 18.6% with a forecasting horizon of 8 min. Consequently, the proposed intra-hour solar forecasting method can potentially reduce the operational costs of power grids with high participation of solar energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3927456843完成签到,获得积分10
27秒前
37秒前
孤独幻桃发布了新的文献求助10
51秒前
充电宝应助孤独幻桃采纳,获得30
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
2分钟前
孤独幻桃完成签到,获得积分10
3分钟前
4分钟前
Z可发布了新的文献求助10
4分钟前
5分钟前
洒家完成签到 ,获得积分10
6分钟前
SciGPT应助连安阳采纳,获得10
6分钟前
7分钟前
连安阳发布了新的文献求助10
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
耍酷平凡发布了新的文献求助30
7分钟前
无悔完成签到 ,获得积分10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
聪明的云完成签到 ,获得积分10
8分钟前
稻子完成签到 ,获得积分10
9分钟前
dinglingling完成签到 ,获得积分10
9分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
9分钟前
CHEN完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
Arthur Zhu完成签到,获得积分10
9分钟前
10分钟前
10分钟前
11分钟前
11分钟前
11分钟前
熊猫胖胖WITH超人完成签到,获得积分20
11分钟前
11分钟前
耍酷平凡发布了新的文献求助10
11分钟前
11分钟前
ewxf2001发布了新的文献求助10
12分钟前
12分钟前
花园里的蒜完成签到 ,获得积分0
12分钟前
荔枝发布了新的文献求助20
12分钟前
ewxf2001完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108