Deep learning for intra-hour solar forecasting with fusion of features extracted from infrared sky images

天空 计算机科学 红外线的 融合 遥感 深度学习 计算机视觉 气象学 人工智能 模式识别(心理学) 天文 物理 地质学 语言学 哲学
作者
Guillermo Terrén-Serrano,Manel Martínez‐Ramón
出处
期刊:Information Fusion [Elsevier BV]
卷期号:95: 42-61 被引量:10
标识
DOI:10.1016/j.inffus.2023.02.006
摘要

The increasing penetration of solar energy leaves power grids vulnerable to fluctuations in the solar radiation that reaches the surface of the Earth due to the projection of cloud shadows. Therefore, an intra-hour solar forecasting algorithm is necessary to reduce power instabilities caused by the impact of moving clouds on energy generation. The most accurate intra-hour solar forecasting methods apply convolutional neural networks to a series of visible light sky images. Instead, this investigation uses data acquired by a novel infrared sky imager on a solar tracker, which is capable of maintaining the Sun in the center of the images throughout the day and, at the same time, reducing the scattering effect produced by the Sun's direct radiation. In addition, infrared sky images allow the derivation and extraction of physical cloud features. The cloud dynamics are analyzed in sequences of images to compute the probability of the Sun intercepting air parcels in the sky images (i.e., voxels). The method introduced in this investigation fuses sky condition information from multiple sensors (i.e., pyranometer, sky imager, solar tracker, weather station) and feature sources using a multi-task deep learning architecture based on recurrent neural networks. The proposed deterministic and Bayesian architectures reduce computation time by avoiding convolutional filters. The proposed intra-hour solar forecasting algorithm reached a forecast skill of 18.6% with a forecasting horizon of 8 min. Consequently, the proposed intra-hour solar forecasting method can potentially reduce the operational costs of power grids with high participation of solar energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助jack采纳,获得10
1秒前
1秒前
冰淇淋发布了新的文献求助10
1秒前
风趣的从梦完成签到,获得积分10
1秒前
木木木完成签到,获得积分10
2秒前
鲤鱼水壶完成签到,获得积分10
2秒前
KHromance发布了新的文献求助10
3秒前
连长完成签到,获得积分10
3秒前
3秒前
ppp发布了新的文献求助10
3秒前
4秒前
4秒前
退而求其次完成签到,获得积分10
5秒前
与可发布了新的文献求助10
6秒前
7秒前
太阳完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
CZLhaust发布了新的文献求助10
8秒前
敢敢发布了新的文献求助10
8秒前
khjia完成签到,获得积分10
8秒前
jack完成签到,获得积分10
9秒前
10秒前
浮浮世世发布了新的文献求助50
10秒前
10秒前
boomboom发布了新的文献求助10
10秒前
ppp完成签到,获得积分10
11秒前
CZLhaust完成签到,获得积分10
12秒前
所所应助Ronnie采纳,获得10
13秒前
华仔应助太阳采纳,获得10
14秒前
浮浮世世完成签到,获得积分10
14秒前
14秒前
15秒前
完美世界应助开心的桔子采纳,获得10
15秒前
wanci应助Ning采纳,获得10
16秒前
16秒前
17秒前
大个应助羽毛采纳,获得10
18秒前
乐乐应助qjx采纳,获得10
19秒前
20秒前
风语发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095