亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UHPLC-QTOF-MS-based untargeted metabolomics revealing the differential chemical constituents and its application on the geographical origins traceability of lily bulbs

偏最小二乘回归 主成分分析 灯泡 代谢组学 线性判别分析 化学计量学 百合科 生物 化学 植物 色谱法 数学 生物信息学 统计
作者
Wanjun Long,Siyu Wang,Chengying Hai,Hengye Chen,Hui‐Wen Gu,Xiaoli Yin,Jian Yang,Haiyan Fu
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:118: 105194-105194 被引量:7
标识
DOI:10.1016/j.jfca.2023.105194
摘要

Lily bulbs have been historically used as an edible and medicinal homologous plant. Identifying the geographical origins of lily bulbs produced in specific origin is of great importance since the geographical origins of lily bulbs influence their quality and price greatly. In this work, an untargeted metabolomic method based on UHPLC-QTOF-MS was established for revealing the differential chemical constituents of lily bulbs among different origins and predicting the geographical origins of them by chemometric modeling. A total of 15 differential compounds were screened and identified from untargeted metabolomic data of 50 lily bulb samples by our previously developed AntDAS software. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that samples from five different origins were obviously distinguished based on the differential compounds. What's more, 7 and 6 key characteristic markers were discovered by partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), respectively. Finally, heatmap, PLS-DA and OPLS-DA models were reconstructed based on the discovered key characteristic markers, and external validation lily bulb samples were successfully discriminated, with recognition rate of 100 %. This study demonstrated that the proposed strategy has great potentials for the differentiation and identification of the geographical origins of lily bulbs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
犬来八荒发布了新的文献求助10
9秒前
qingfeng完成签到,获得积分10
19秒前
FashionBoy应助犬来八荒采纳,获得20
19秒前
lx完成签到,获得积分10
21秒前
bkagyin应助张璟博采纳,获得10
29秒前
踏实白柏完成签到 ,获得积分10
50秒前
51秒前
明亮的老四完成签到 ,获得积分10
1分钟前
1分钟前
好人发布了新的文献求助30
1分钟前
好人完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助Epiphany采纳,获得10
1分钟前
1分钟前
张璟博发布了新的文献求助10
1分钟前
犬来八荒发布了新的文献求助20
1分钟前
可爱的函函应助张璟博采纳,获得10
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
1分钟前
TXZ06发布了新的文献求助30
2分钟前
2分钟前
冷酷愚志完成签到,获得积分10
2分钟前
2分钟前
饼子完成签到 ,获得积分10
2分钟前
2分钟前
Epiphany完成签到,获得积分10
3分钟前
3分钟前
TXZ06发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
kuoping完成签到,获得积分0
4分钟前
4分钟前
4分钟前
TXZ06发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634933
求助须知:如何正确求助?哪些是违规求助? 4734317
关于积分的说明 14989509
捐赠科研通 4792669
什么是DOI,文献DOI怎么找? 2559771
邀请新用户注册赠送积分活动 1520077
关于科研通互助平台的介绍 1480136