UHPLC-QTOF-MS-based untargeted metabolomics revealing the differential chemical constituents and its application on the geographical origins traceability of lily bulbs

偏最小二乘回归 主成分分析 灯泡 代谢组学 线性判别分析 化学计量学 百合科 生物 化学 植物 色谱法 数学 生物信息学 统计
作者
Wanjun Long,Siyu Wang,Chengying Hai,Hengye Chen,Hui‐Wen Gu,Xiaoli Yin,Jian Yang,Haiyan Fu
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:118: 105194-105194 被引量:7
标识
DOI:10.1016/j.jfca.2023.105194
摘要

Lily bulbs have been historically used as an edible and medicinal homologous plant. Identifying the geographical origins of lily bulbs produced in specific origin is of great importance since the geographical origins of lily bulbs influence their quality and price greatly. In this work, an untargeted metabolomic method based on UHPLC-QTOF-MS was established for revealing the differential chemical constituents of lily bulbs among different origins and predicting the geographical origins of them by chemometric modeling. A total of 15 differential compounds were screened and identified from untargeted metabolomic data of 50 lily bulb samples by our previously developed AntDAS software. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that samples from five different origins were obviously distinguished based on the differential compounds. What's more, 7 and 6 key characteristic markers were discovered by partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), respectively. Finally, heatmap, PLS-DA and OPLS-DA models were reconstructed based on the discovered key characteristic markers, and external validation lily bulb samples were successfully discriminated, with recognition rate of 100 %. This study demonstrated that the proposed strategy has great potentials for the differentiation and identification of the geographical origins of lily bulbs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Bao_o_o发布了新的文献求助10
刚刚
迷路的问蕊完成签到,获得积分20
刚刚
团结友爱发布了新的文献求助10
1秒前
盐烤香鱼完成签到,获得积分10
1秒前
1秒前
Orange应助Alex采纳,获得10
2秒前
nnnn应助wuchun采纳,获得20
2秒前
2秒前
2秒前
2秒前
今后应助等待的凌晴采纳,获得30
3秒前
毛彬发布了新的文献求助10
3秒前
酷酷的起眸完成签到,获得积分20
3秒前
NexusExplorer应助hooke采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI6应助口天吴采纳,获得10
5秒前
5秒前
5秒前
壮观晓博发布了新的文献求助10
6秒前
泰想成功发布了新的文献求助10
6秒前
yahaha完成签到,获得积分10
6秒前
6秒前
6秒前
1592611829完成签到,获得积分10
6秒前
TOMORROW完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
今后应助yoyo采纳,获得10
7秒前
落后的哈密瓜完成签到,获得积分10
7秒前
8秒前
FashionBoy应助倪13采纳,获得10
8秒前
mht发布了新的文献求助10
9秒前
深情安青应助luoyulin采纳,获得10
9秒前
滴滴答答发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791