UHPLC-QTOF-MS-based untargeted metabolomics revealing the differential chemical constituents and its application on the geographical origins traceability of lily bulbs

偏最小二乘回归 主成分分析 灯泡 代谢组学 线性判别分析 化学计量学 百合科 生物 化学 植物 色谱法 数学 生物信息学 统计
作者
Wanjun Long,Siyu Wang,Chengying Hai,Hengye Chen,Hui‐Wen Gu,Xiaoli Yin,Jian Yang,Haiyan Fu
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:118: 105194-105194 被引量:7
标识
DOI:10.1016/j.jfca.2023.105194
摘要

Lily bulbs have been historically used as an edible and medicinal homologous plant. Identifying the geographical origins of lily bulbs produced in specific origin is of great importance since the geographical origins of lily bulbs influence their quality and price greatly. In this work, an untargeted metabolomic method based on UHPLC-QTOF-MS was established for revealing the differential chemical constituents of lily bulbs among different origins and predicting the geographical origins of them by chemometric modeling. A total of 15 differential compounds were screened and identified from untargeted metabolomic data of 50 lily bulb samples by our previously developed AntDAS software. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that samples from five different origins were obviously distinguished based on the differential compounds. What's more, 7 and 6 key characteristic markers were discovered by partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), respectively. Finally, heatmap, PLS-DA and OPLS-DA models were reconstructed based on the discovered key characteristic markers, and external validation lily bulb samples were successfully discriminated, with recognition rate of 100 %. This study demonstrated that the proposed strategy has great potentials for the differentiation and identification of the geographical origins of lily bulbs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ting完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
Ava应助Eureka采纳,获得10
5秒前
何新何完成签到,获得积分10
5秒前
zty完成签到 ,获得积分10
5秒前
June完成签到,获得积分10
5秒前
研友_nqylan发布了新的文献求助10
6秒前
Ava应助波妞采纳,获得10
6秒前
超级秋发布了新的文献求助10
6秒前
Z_yiming完成签到,获得积分10
7秒前
MADAO发布了新的文献求助10
7秒前
7秒前
hanzi发布了新的文献求助10
8秒前
9秒前
SciGPT应助potatoo1984采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
何新何发布了新的文献求助10
12秒前
13秒前
lzr完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
GR发布了新的文献求助10
15秒前
火星上的穆完成签到,获得积分10
16秒前
木易楊发布了新的文献求助10
16秒前
Canon大炮发布了新的文献求助10
16秒前
17秒前
17秒前
kkkkkk完成签到 ,获得积分10
17秒前
Liberal-5发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675425
求助须知:如何正确求助?哪些是违规求助? 4946530
关于积分的说明 15153210
捐赠科研通 4834696
什么是DOI,文献DOI怎么找? 2589626
邀请新用户注册赠送积分活动 1543346
关于科研通互助平台的介绍 1501186