亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UHPLC-QTOF-MS-based untargeted metabolomics revealing the differential chemical constituents and its application on the geographical origins traceability of lily bulbs

偏最小二乘回归 主成分分析 灯泡 代谢组学 线性判别分析 化学计量学 百合科 生物 化学 植物 色谱法 数学 生物信息学 统计
作者
Wanjun Long,Siyu Wang,Chengying Hai,Hengye Chen,Hui‐Wen Gu,Xiaoli Yin,Jian Yang,Haiyan Fu
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:118: 105194-105194 被引量:7
标识
DOI:10.1016/j.jfca.2023.105194
摘要

Lily bulbs have been historically used as an edible and medicinal homologous plant. Identifying the geographical origins of lily bulbs produced in specific origin is of great importance since the geographical origins of lily bulbs influence their quality and price greatly. In this work, an untargeted metabolomic method based on UHPLC-QTOF-MS was established for revealing the differential chemical constituents of lily bulbs among different origins and predicting the geographical origins of them by chemometric modeling. A total of 15 differential compounds were screened and identified from untargeted metabolomic data of 50 lily bulb samples by our previously developed AntDAS software. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) showed that samples from five different origins were obviously distinguished based on the differential compounds. What's more, 7 and 6 key characteristic markers were discovered by partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), respectively. Finally, heatmap, PLS-DA and OPLS-DA models were reconstructed based on the discovered key characteristic markers, and external validation lily bulb samples were successfully discriminated, with recognition rate of 100 %. This study demonstrated that the proposed strategy has great potentials for the differentiation and identification of the geographical origins of lily bulbs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助XX采纳,获得30
8秒前
Thi发布了新的文献求助10
8秒前
11秒前
13秒前
18秒前
Jiangtao完成签到,获得积分10
20秒前
Viiigo完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
guagua发布了新的文献求助10
34秒前
科研通AI2S应助guagua采纳,获得10
45秒前
46秒前
热情依白完成签到 ,获得积分10
51秒前
59秒前
1分钟前
忧心的香水完成签到,获得积分10
1分钟前
1分钟前
original完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大气亦巧发布了新的文献求助10
1分钟前
1分钟前
1分钟前
安青兰完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
Criminology34举报Raymond求助涉嫌违规
2分钟前
空溟fever发布了新的文献求助10
2分钟前
hx发布了新的文献求助10
2分钟前
大气亦巧完成签到,获得积分10
2分钟前
2分钟前
2分钟前
领导范儿应助谛因采纳,获得50
2分钟前
2分钟前
李健应助赵振辉采纳,获得10
2分钟前
romance发布了新的文献求助10
2分钟前
斯文败类应助hx采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639594
求助须知:如何正确求助?哪些是违规求助? 4749168
关于积分的说明 15006790
捐赠科研通 4797774
什么是DOI,文献DOI怎么找? 2563840
邀请新用户注册赠送积分活动 1522769
关于科研通互助平台的介绍 1482471