Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion‐Weighted MR Imaging: An Externally Validated Machine Learning Algorithm

流体衰减反转恢复 接收机工作特性 有效扩散系数 医学 异柠檬酸脱氢酶 曼惠特尼U检验 核医学 算法 成像生物标志物 磁共振成像 磁共振弥散成像 放射科 计算机科学 内科学 生物 生物化学
作者
Yang Guo,Zeyu Ma,Dongling Pei,Wenchao Duan,Yu Guo,Zhongyi Liu,Fangzhan Guan,Zilong Wang,Aoqi Xing,Zhixuan Guo,Lin Luo,Weiwei Wang,Bin Yu,Jinqiao Zhou,Yuchen Ji,Dongming Yan,Jingliang Cheng,Xianzhi Liu,Jing Yan,Zhenyu Zhang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (4): 1234-1242 被引量:5
标识
DOI:10.1002/jmri.28630
摘要

Genetic testing for molecular markers of gliomas sometimes is unavailable because of time-consuming and expensive, even limited tumor specimens or nonsurgery cases.To train a three-class radiomic model classifying three molecular subtypes including isocitrate dehydrogenase (IDH) mutations and 1p/19q-noncodeleted (IDHmut-noncodel), IDH wild-type (IDHwt), IDH-mutant and 1p/19q-codeleted (IDHmut-codel) of adult gliomas and investigate whether radiomic features from diffusion-weighted imaging (DWI) could bring additive value.Retrospective.A total of 755 patients including 111 IDHmut-noncodel, 571 IDHwt, and 73 IDHmut-codel cases were divided into training (n = 480) and internal validation set (n = 275); 139 patients including 21 IDHmut-noncodel, 104 IDHwt, and 14 IDHmut-codel cases were utilized as external validation set.A 1.5 T or 3.0 T/multiparametric MRI, including T1-weighted (T1), T1-weighted gadolinium contrast-enhanced (T1c), T2-weighted (T2), fluid attenuated inversion recovery (FLAIR), and DWI.The performance of multiparametric radiomic model (random-forest model) using 22 selected features from T1, T2, FLAIR, T1c images and apparent diffusion coefficient (ADC) maps, and conventional radiomic model using 20 selected features from T1, T2, FLAIR, and T1c images was assessed in internal and external validation sets by comparing probability values and actual incidence.Mann-Whitney U test, Chi-Squared test, Wilcoxon test, receiver operating curve (ROC), and area under the curve (AUC); DeLong analysis. P < 0.05 was statistically significant.The multiparametric radiomic model achieved AUC values for IDHmut-noncodel, IDHwt, and IDHmut-codel of 0.8181, 0.8524, and 0.8502 in internal validation set and 0.7571, 0.7779, and 0.7491 in external validation set, respectively. Multiparametric radiomic model showed significantly better diagnostic performance after DeLong analysis, especially in classifying IDHwt and IDHmut-noncodel subtypes.Radiomic features from DWI could bring additive value and improve the performance of conventional MRI-based radiomic model for classifying the molecular subtypes especially IDHmut-noncodel and IDHwt of adult gliomas.Stage 2.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的不愁完成签到,获得积分10
刚刚
jiujiuji发布了新的文献求助10
1秒前
1秒前
小余同学完成签到,获得积分10
2秒前
乐乐应助GGbond采纳,获得10
2秒前
万能图书馆应助GGbond采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Ye完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
Tina完成签到,获得积分10
7秒前
领导范儿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
ccmxigua应助科研通管家采纳,获得10
8秒前
欢呼乘风应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得30
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
CDQ完成签到,获得积分10
10秒前
10秒前
11秒前
所所应助halo采纳,获得10
11秒前
隐形曼青应助优TT采纳,获得10
11秒前
11秒前
QWSS发布了新的文献求助10
12秒前
Tina发布了新的文献求助10
12秒前
江小刀发布了新的文献求助10
14秒前
ccc完成签到,获得积分10
14秒前
不安忆寒发布了新的文献求助10
14秒前
Akim应助温婉的篮球采纳,获得10
16秒前
今后应助咯咚采纳,获得10
16秒前
华仔应助Certainty橙子采纳,获得10
16秒前
平常心发布了新的文献求助10
16秒前
zhzhzh发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858