Hierarchical graph neural network with adaptive cross-graph fusion for remaining useful life prediction

计算机科学 图形 传感器融合 人工神经网络 杠杆(统计) 模块化设计 数据挖掘 理论计算机科学 人工智能 操作系统
作者
Gang Wang,Yanan Zhang,Ming-Feng Lu,Zhangjun Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055112-055112 被引量:5
标识
DOI:10.1088/1361-6501/acb83e
摘要

Abstract Multi-sensor monitoring data provide abundant information resources for complex machine systems, which facilitates monitoring the degradation process of machinery and ensuring the reliability of the industrial process. However, previous prognostic methods focus more on the sequential data obtained from multi-sensors, while ignoring the underlying prior structural information of the equipment. To fully leverage the structural information into the modeling process, and thus improve the remaining useful life (RUL) prediction performance, a hierarchical graph neural network with adaptive cross-graph fusion (HGNN-ACGF) method for RUL prediction is proposed in this study. In the HGNN-ACGF method, a hierarchical graph consisting of a sensor graph and a module graph is constructed by introducing the structural information to fully model the degradation trend information of the complex machine system. Besides, the graph neural network (GNN) is adopted to learn the representation at both the module graph and sensor graph, and an adaptive cross-graph fusion (ACGF) block is proposed. Owing to the cross-graph fusion block, the representation from different graphs can be fused adaptively by considering the relative importance between different modules and sensors. To verify the proposed method, the experiments were conducted on a set of degradation data sets of aircraft engines provided by the Commercial Modular Aero-Propulsion System Simulation. The experimental results show that the proposed method has superior performance in RUL prediction over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观静蕾发布了新的文献求助10
刚刚
丰富冰凡完成签到,获得积分10
2秒前
burningzmz发布了新的文献求助10
3秒前
科研老头完成签到,获得积分10
3秒前
大模型应助是一个好故事采纳,获得10
6秒前
艺阳完成签到,获得积分10
7秒前
12秒前
12秒前
13秒前
Ethan发布了新的文献求助10
14秒前
15秒前
不配.应助郑派采纳,获得30
15秒前
17秒前
快乐的小康完成签到,获得积分10
17秒前
18秒前
18秒前
思源应助wu采纳,获得10
19秒前
20秒前
科研通AI2S应助Ecc采纳,获得10
21秒前
21秒前
CDQ发布了新的文献求助30
24秒前
璇儿完成签到,获得积分10
24秒前
立军发布了新的文献求助10
24秒前
顾矜应助Tuan采纳,获得10
24秒前
25秒前
25秒前
26秒前
RebeccaHe完成签到,获得积分10
28秒前
yikun完成签到,获得积分20
28秒前
科研小弟完成签到 ,获得积分10
30秒前
wu发布了新的文献求助10
30秒前
梨落完成签到,获得积分10
30秒前
31秒前
31秒前
35秒前
无限的雨梅完成签到 ,获得积分10
36秒前
Tuan发布了新的文献求助10
36秒前
闪耀星星发布了新的文献求助10
40秒前
LJN完成签到 ,获得积分10
43秒前
是一个好故事完成签到,获得积分10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143741
求助须知:如何正确求助?哪些是违规求助? 2795245
关于积分的说明 7813862
捐赠科研通 2451235
什么是DOI,文献DOI怎么找? 1304371
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413