Hierarchical graph neural network with adaptive cross-graph fusion for remaining useful life prediction

计算机科学 图形 传感器融合 人工神经网络 杠杆(统计) 模块化设计 数据挖掘 理论计算机科学 人工智能 操作系统
作者
Gang Wang,Yanan Zhang,Ming-Feng Lu,Zhangjun Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (5): 055112-055112 被引量:8
标识
DOI:10.1088/1361-6501/acb83e
摘要

Abstract Multi-sensor monitoring data provide abundant information resources for complex machine systems, which facilitates monitoring the degradation process of machinery and ensuring the reliability of the industrial process. However, previous prognostic methods focus more on the sequential data obtained from multi-sensors, while ignoring the underlying prior structural information of the equipment. To fully leverage the structural information into the modeling process, and thus improve the remaining useful life (RUL) prediction performance, a hierarchical graph neural network with adaptive cross-graph fusion (HGNN-ACGF) method for RUL prediction is proposed in this study. In the HGNN-ACGF method, a hierarchical graph consisting of a sensor graph and a module graph is constructed by introducing the structural information to fully model the degradation trend information of the complex machine system. Besides, the graph neural network (GNN) is adopted to learn the representation at both the module graph and sensor graph, and an adaptive cross-graph fusion (ACGF) block is proposed. Owing to the cross-graph fusion block, the representation from different graphs can be fused adaptively by considering the relative importance between different modules and sensors. To verify the proposed method, the experiments were conducted on a set of degradation data sets of aircraft engines provided by the Commercial Modular Aero-Propulsion System Simulation. The experimental results show that the proposed method has superior performance in RUL prediction over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
梅子应助科研通管家采纳,获得10
4秒前
cdercder应助科研通管家采纳,获得10
4秒前
爱吃大米发布了新的文献求助10
5秒前
一个小胖子完成签到,获得积分10
7秒前
qweas完成签到,获得积分10
7秒前
Ding-Ding完成签到,获得积分10
7秒前
czz014完成签到,获得积分10
8秒前
汉堡包应助Erislastem采纳,获得10
10秒前
淡然水绿完成签到,获得积分10
10秒前
阿九完成签到,获得积分10
13秒前
Pauline完成签到 ,获得积分10
13秒前
隐形曼青应助爱吃大米采纳,获得10
14秒前
marska完成签到,获得积分10
15秒前
钟小熊完成签到,获得积分10
17秒前
19秒前
Jun完成签到 ,获得积分10
20秒前
笑林完成签到 ,获得积分10
23秒前
echo完成签到 ,获得积分10
23秒前
25秒前
34秒前
yangdaodan完成签到 ,获得积分10
37秒前
韭菜完成签到,获得积分20
38秒前
朴素海亦完成签到 ,获得积分10
40秒前
40秒前
科研小南完成签到 ,获得积分10
43秒前
研友_Ze2wB8发布了新的文献求助10
44秒前
45秒前
骑着蚂蚁追大象完成签到,获得积分10
47秒前
怕黑凤妖完成签到 ,获得积分10
50秒前
Jocelyn完成签到,获得积分10
53秒前
GD88完成签到,获得积分10
55秒前
jzmupyj完成签到,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736760
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020338
捐赠科研通 2997407
什么是DOI,文献DOI怎么找? 1644533
邀请新用户注册赠送积分活动 782070
科研通“疑难数据库(出版商)”最低求助积分说明 749656