Novel wind speed forecasting model based on a deep learning combined strategy in urban energy systems

计算机科学 风速 风力发电 能量(信号处理) 人工智能 机器学习 气象学 工程类 数学 统计 电气工程 物理
作者
Hao Yan,Wendong Yang,Kedong Yin
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:219: 119636-119636 被引量:39
标识
DOI:10.1016/j.eswa.2023.119636
摘要

Effective wind speed forecasting has great significance for urban energy system operations and the construction of low-carbon cities. However, most previous research has focused only on data in the same frequency, limiting forecast performance to some extent. In this study, considering the value of mix-frequency data, a deep learning combined model based on mixed frequency modeling is developed to improve forecast effectiveness. Firstly, a data preprocessing module is designed to decompose and reconstruct the original low- and high-frequency wind speeds. Then, a mixed frequency modeling module, comprising four mixed data sampling models and four machine learning models, is proposed to achieve mixed frequency wind speed forecasting. Further, the optimal sub-models are determined based on a newly developed evaluation index. Finally, a deep-learning-based non-linear combination forecasting module is developed to realize wind speed forecasting by taking full advantage of optimal sub-models to increase forecasting performance and guarantee the developed model’s accuracy and stability. Furthermore, a scientific and comprehensive evaluation module is established. Four experiments and eight discussions based on real wind farms demonstrate that the developed model can significantly enhance wind speed forecasting performance, accelerate the construction of low-carbon cities, and improve the sustainable and resilient development of urban energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
十七应助斯文墨镜采纳,获得10
3秒前
Sirene发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
7秒前
juntang发布了新的文献求助10
7秒前
notcc发布了新的文献求助10
9秒前
狗儿吖发布了新的文献求助10
9秒前
Tinsulfides发布了新的文献求助10
9秒前
10秒前
所所应助史蒂芬·周采纳,获得10
11秒前
可乐发布了新的文献求助10
11秒前
Sirene完成签到,获得积分20
12秒前
12秒前
12秒前
OMR123完成签到,获得积分10
13秒前
ZhangKeyan完成签到,获得积分10
13秒前
完美世界应助玉婷采纳,获得30
15秒前
16秒前
Tinsulfides完成签到,获得积分10
16秒前
nana发布了新的文献求助10
17秒前
不安青牛应助notcc采纳,获得10
18秒前
万能图书馆应助ZhangKeyan采纳,获得10
18秒前
18秒前
满意若灵发布了新的文献求助10
19秒前
渔舟唱晚应助贺可乐采纳,获得10
20秒前
lin完成签到,获得积分10
21秒前
FashionBoy应助arf采纳,获得10
21秒前
胡八一发布了新的文献求助10
22秒前
22秒前
23秒前
tanbao发布了新的文献求助10
24秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387930
求助须知:如何正确求助?哪些是违规求助? 3000442
关于积分的说明 8791539
捐赠科研通 2686501
什么是DOI,文献DOI怎么找? 1471664
科研通“疑难数据库(出版商)”最低求助积分说明 680424
邀请新用户注册赠送积分活动 673174