Face-to-Face Interaction with Pedagogical Agents, Twenty Years Later

多样性(控制论) 计算机科学 背景(考古学) 面子(社会学概念) 人机交互 教育技术 人工智能 多媒体 数学教育 心理学 社会学 社会科学 生物 古生物学
作者
W. Lewis Johnson,James C. Lester
出处
期刊:International Journal of Artificial Intelligence in Education [Springer Nature]
卷期号:26 (1): 25-36 被引量:182
标识
DOI:10.1007/s40593-015-0065-9
摘要

Johnson et al. (International Journal of Artificial Intelligence in Education, 11, 47–78, 2000) introduced and surveyed a new paradigm for interactive learning environments: animated pedagogical agents. The article argued for combining animated interface agent technologies with intelligent learning environments, yielding intelligent systems that can interact with learners in natural, human-like ways to achieve better learning outcomes. We outlined a variety of possible uses for pedagogical agents. But we offered only preliminary evidence that they improve learning, leaving that to future research and development. Twenty years have elapsed since work began on animated pedagogical agents. This article re-examines the concepts and predictions in the 2000 article in the context of the current state of the field. Some of the ideas in the paper have become well established and widely adopted, especially in game-based learning environments. Others are only now being realized, thanks to advances in immersive interfaces and robotics that enable rich face-to-face interaction between learners and agents. Research has confirmed that pedagogical agents can be beneficial, but not equally for all learning problems, applications, and learner populations. Although there is a growing body of research findings about pedagogical agents, many questions remain and much work remains to be done.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月发布了新的文献求助10
刚刚
科研通AI6应助轻松的沛萍采纳,获得10
1秒前
Owen应助旺旺碎冰冰采纳,获得10
1秒前
1秒前
川农辅导员完成签到,获得积分10
1秒前
3秒前
0美团外卖0完成签到,获得积分10
3秒前
丰富的安梦应助xuan采纳,获得30
4秒前
充电宝应助xuan采纳,获得10
4秒前
科研通AI6应助xuan采纳,获得10
4秒前
小马甲应助xuan采纳,获得10
4秒前
科研通AI6应助xuan采纳,获得10
4秒前
天天快乐应助xuan采纳,获得10
4秒前
852应助xuan采纳,获得10
4秒前
Orange应助xuan采纳,获得10
4秒前
科研通AI6应助xuan采纳,获得10
4秒前
情怀应助xuan采纳,获得10
4秒前
英吉利25发布了新的文献求助10
4秒前
5秒前
5秒前
LL关注了科研通微信公众号
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
小蘑菇应助小姜同学采纳,获得10
5秒前
qiushuang发布了新的文献求助10
6秒前
原yuan发布了新的文献求助10
6秒前
6秒前
7秒前
9秒前
布衣发布了新的文献求助10
9秒前
9秒前
icecream完成签到,获得积分10
9秒前
9秒前
八二力发布了新的文献求助10
9秒前
9秒前
李健的小迷弟应助千里采纳,获得10
9秒前
9秒前
贝贝发布了新的文献求助10
9秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656560
求助须知:如何正确求助?哪些是违规求助? 4804154
关于积分的说明 15076185
捐赠科研通 4814847
什么是DOI,文献DOI怎么找? 2576000
邀请新用户注册赠送积分活动 1531353
关于科研通互助平台的介绍 1489900