Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells

核糖核酸 核酶 适体 纳米颗粒 生物物理学 基因沉默 纳米技术 小干扰RNA 体外 DNA 化学 生物 材料科学 细胞生物学 生物化学 基因 分子生物学
作者
Yi Shu,Dan Shu,Farzin Haque,Peixuan Guo
出处
期刊:Nature Protocols [Springer Nature]
卷期号:8 (9): 1635-1659 被引量:113
标识
DOI:10.1038/nprot.2013.097
摘要

RNA nanotechnology is a term that refers to the design, fabrication and use of nanoparticles that are mainly composed of RNAs via bottom-up self-assembly. The packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor has been developed into a nanodelivery platform. This protocol describes the synthesis, assembly and functionalization of pRNA nanoparticles on the basis of three 'toolkits' derived from pRNA structural features: interlocking loops for hand-in-hand interactions, palindrome sequences for foot-to-foot interactions and an RNA three-way junction for branch extension. siRNAs, ribozymes, aptamers, chemical ligands, fluorophores and other functionalities can also be fused to the pRNA before the assembly of the nanoparticles, so as to ensure the production of homogeneous nanoparticles and the retention of appropriate folding and function of the incorporated modules. The resulting self-assembled multivalent pRNA nanoparticles are thermodynamically and chemically stable, and they remain intact at ultralow concentrations. Gene-silencing effects are progressively enhanced with increasing numbers of siRNAs in each pRNA nanoparticle. Systemic injection of the pRNA nanoparticles into xenograft-bearing mice has revealed strong binding to tumors without accumulation in vital organs or tissues. The pRNA-based nanodelivery scaffold paves a new way for nanotechnological application of pRNA-based nanoparticles for disease detection and treatment. The time required for completing one round of this protocol is 3-4 weeks when including in vitro functional assays, or 2-3 months when including in vivo studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定尔白发布了新的文献求助10
刚刚
1秒前
英俊的铭应助心灵美寻桃采纳,获得10
2秒前
2秒前
sjr发布了新的文献求助10
2秒前
爱静静应助老肥采纳,获得30
3秒前
3秒前
4秒前
4秒前
动听书雁发布了新的文献求助10
5秒前
英姑应助沙xiaohan采纳,获得10
5秒前
棉花糖完成签到,获得积分10
5秒前
yatuitui完成签到,获得积分10
5秒前
warmhelium发布了新的文献求助10
6秒前
坚定尔白完成签到,获得积分10
6秒前
猫好好发布了新的文献求助10
7秒前
大力信封完成签到,获得积分10
7秒前
昵称发布了新的文献求助10
7秒前
7秒前
7秒前
周雪峰完成签到,获得积分10
8秒前
zain完成签到 ,获得积分10
8秒前
汉堡包应助roy_chiang采纳,获得10
10秒前
科研通AI5应助Nyxia采纳,获得10
10秒前
大葱发布了新的文献求助10
11秒前
情怀应助warmhelium采纳,获得10
11秒前
真水无香123应助饱满懿轩采纳,获得10
11秒前
12秒前
orixero应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
VDC应助科研通管家采纳,获得30
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
苏卿应助科研通管家采纳,获得10
12秒前
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246