电催化剂
钙钛矿(结构)
氧化物
X射线光电子能谱
锶
材料科学
氧气
催化作用
化学工程
铂金
化学
无机化学
电化学
电极
物理化学
冶金
生物化学
有机化学
工程类
作者
Ethan J. Crumlin,Eva Mutoro,Zhi Liu,Michael Graß,Michael D. Biegalski,Yueh‐Lin Lee,Dane Morgan,Hans M. Christen,Hendrik Bluhm,Yang Shao‐Horn
摘要
Perovskite oxides have high catalytic activities for oxygen electrocatalysis competitive to platinum at elevated temperatures. However, little is known about the oxide surface chemistry that influences the activity near ambient oxygen partial pressures, which hampers the design of highly active catalysts for many clean-energy technologies such as solid oxide fuel cells. Using in situsynchrotron-based, ambient pressure X-ray photoelectron spectroscopy to study the surface chemistry changes, we show that the coverage of surface secondary phases on a (001)-oriented La0.8Sr0.2CoO3−δ (LSC) film becomes smaller than that on an LSC powder pellet at elevated temperatures. In addition, strontium (Sr) in the perovskite structure enriches towards the film surface in contrast to the pellet having no detectable changes with increasing temperature. We propose that the ability to reduce surface secondary phases and develop Sr-enriched perovskite surfaces of the LSC film contributes to its enhanced activity for O2 electrocatalysis relative to LSC powder-based electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI