Cellulose-hemicellulose interaction in wood secondary cell-wall

半纤维素 纤维素 木质素 材料科学 复合材料 细胞壁 抗剪强度(土壤) 纤维素纤维 纤维 化学 有机化学 生物化学 地质学 土壤科学 土壤水分
作者
Ning Zhang,Shi Li,Liming Xiong,Yu Hong,Youping Chen
出处
期刊:Modelling and Simulation in Materials Science and Engineering [IOP Publishing]
卷期号:23 (8): 085010-085010 被引量:108
标识
DOI:10.1088/0965-0393/23/8/085010
摘要

The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jing完成签到,获得积分20
刚刚
刚刚
刚刚
yyy关注了科研通微信公众号
1秒前
1秒前
恣稚完成签到,获得积分10
1秒前
灰灰发布了新的文献求助10
1秒前
阳光蓉完成签到,获得积分10
1秒前
xxxidgkris发布了新的文献求助30
1秒前
叮当喵发布了新的文献求助10
2秒前
打打应助Roxie采纳,获得30
2秒前
123发布了新的文献求助10
2秒前
crystal完成签到,获得积分10
2秒前
upupup完成签到,获得积分10
2秒前
2秒前
鱼柒完成签到,获得积分10
3秒前
珊明治完成签到,获得积分10
3秒前
mmol发布了新的文献求助10
4秒前
4秒前
露露发布了新的文献求助10
4秒前
4秒前
向向完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Wangjingxuan完成签到,获得积分10
5秒前
kuyng发布了新的文献求助10
5秒前
清爽的新瑶完成签到,获得积分10
5秒前
磨磨完成签到,获得积分10
6秒前
科研通AI6应助碧蓝之柔采纳,获得10
6秒前
6秒前
慕青应助我是狗采纳,获得10
6秒前
7秒前
研友_QLXagn发布了新的文献求助10
7秒前
7秒前
7秒前
隐形的谷槐完成签到 ,获得积分10
8秒前
8秒前
DreamSeker8发布了新的文献求助10
9秒前
奋斗发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844