石墨烯
多巴胺
材料科学
电化学
催化作用
酶
生物传感器
酶催化
纳米技术
组合化学
化学
生物化学
电极
生物
物理化学
神经科学
作者
Xiaoyi Yan,Yue Gu,Cong Li,Liu Tang,Bo Zheng,Yaru Li,Zhiquan Zhang,Ming Yang
标识
DOI:10.1016/j.bios.2015.10.085
摘要
In this paper, linking with the butoxycarbonyl (BOC) protection of proline, a new tailed metalloporphyrin with many useful active functions, nickel (II) 5-[4-N-(tert-Butoxycarbonyl)-l-prolinecoxylpropyloxy]phenyl-10,15,20-triphenylporphyrin (NiTBLPyP), was designed and synthesized. And the NiTBLPyP polymer (poly(NiTBLPyP)) was successfully obtained via a low-cost electrochemical method and exploited as an efficient mimic enzyme. Subsequently, a noncovalent nanohybrid of poly(NiTBLPyP) with graphene (rGO) sheet (rGO-poly(NiTBLPyP)) was prepared through π-π stacking interaction for the ultrasensitive and selective detection of DA. The nanohybrid was characterized by UV-vis spectroscopy, Fourier transform infrared spectra, Raman spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy. Due to the excellent electrocatalytic ability of poly(NiTBLPyP) film and aromatic π-π stacking interaction between poly(NiTBLPyP and rGO sheet, the obtained rGO-poly(NiTBLPyP) film exhibited a great synergistic amplification effect toward dopamine oxidation. Under optimum experimental conditions, the logarithm of catalytic currents showed a good linear relationship with that of the dopamine concentration in the range of 0.01-200 μM with a low detection limit of 1.40 nM. With good sensitivity and selectivity, the present method was applied to the determination of DA in real sample and the results was satisfactory. Thus, the rGO-poly(NiTBLPyP) film is one of the promising mimetic enzyme for electrocatalysis and relevant fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI