Quality Evaluation of Traditional Chinese Medicine Compounds in Xiaoyan Lidan Tablets: Fingerprint and Quantitative Analysis Using UPLC-MS

色谱法 指纹(计算) 化学 高效液相色谱法 迷迭香酸 人工智能 计算机科学 生物化学 抗氧化剂
作者
Na Yang,Aizhen Xiong,Rui Wang,Li Yang,Zhengtao Wang
出处
期刊:Molecules [MDPI AG]
卷期号:21 (2): 83-83 被引量:21
标识
DOI:10.3390/molecules21020083
摘要

XiaoyanLidan tablets (XYLDTs) are traditional Chinese medicines frequently used for syndromes of the liver and gallbladder, cholecystitis and cholangitis. To evaluate the consistency of the quality of commercial XYLDT preparations, we established a simple and reliable ultra-performance liquid chromatography (UPLC) method with a photodiode array (PDA) detector and mass spectrometry (MS), including a fingerprint analysis and quantification of the main pharmacologically-active markers. In the UPLC-PDA detection-based fingerprint analysis of XYLDTs, approximately 39 peaks were found in the XYLDT chromatogram, 26 of which were attributed to Picrasmaquassioides, nine to Andrographis and four to Isodonserra. Subsequently, the structures of these bioactive markers were identified through ESI-MS analyses. Using the chemometricmethods of similarity analysis and principal component analysis, the five significant herbal componentswere determined as 4-methoxy-5-hydroxycanthin-6-one, andrographolide, dehydroandrographolide, neoandrographolide and rosmarinic acid, and these components were qualitatively assessed. Our experimental results demonstrated that combining the fingerprint analysis with UPLC-MS and multi-ingredient determination is useful for rapid pharmaceutical quality evaluation. Moreover, the combined approach can potentially differentiate the origin, determine the authenticity and assess the overall quality of the formulae.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
jiangcy完成签到,获得积分10
2秒前
Ying完成签到 ,获得积分10
2秒前
秋小阳桑完成签到 ,获得积分10
2秒前
Carhao应助lalalala采纳,获得10
2秒前
3秒前
3秒前
Ava应助xushanqi采纳,获得10
4秒前
魁梧的伟帮完成签到,获得积分10
4秒前
buno应助zj采纳,获得10
4秒前
4秒前
自然的元彤完成签到,获得积分10
5秒前
5秒前
梦想or现实完成签到,获得积分10
6秒前
研友_LOoomL发布了新的文献求助10
7秒前
hjs888完成签到,获得积分20
7秒前
孤独患者发布了新的文献求助10
7秒前
想念完成签到,获得积分10
9秒前
10秒前
hjs888发布了新的文献求助10
10秒前
11秒前
11秒前
bkagyin应助李喜喜采纳,获得10
11秒前
小古发布了新的文献求助10
11秒前
怡然平露完成签到,获得积分10
12秒前
years完成签到,获得积分10
12秒前
PeilunLi发布了新的文献求助30
13秒前
严究生发布了新的文献求助10
14秒前
15秒前
传奇3应助ZZZ采纳,获得10
15秒前
15秒前
15秒前
16秒前
Robin发布了新的文献求助10
16秒前
刘jinkai发布了新的文献求助10
16秒前
16秒前
搜集达人应助菜鸡采纳,获得10
17秒前
18秒前
bwx给bwx的求助进行了留言
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222817
求助须知:如何正确求助?哪些是违规求助? 2871641
关于积分的说明 8176254
捐赠科研通 2538573
什么是DOI,文献DOI怎么找? 1370638
科研通“疑难数据库(出版商)”最低求助积分说明 645828
邀请新用户注册赠送积分活动 619710