Despite the considerable efforts applied toward developing stretchable electronics, few intrinsically stretchable semiconductors have been reported that retain the original electrical characteristics under stretching. This study introduces an intrinsically stretchable and transparent organic semiconducting layer by blending self‐assembled nanowires (NWs) of an organic semiconductor with an elastomeric and transparent polymer. Blends of poly(3‐hexylthiophene) (P3HT) NWs and poly(dimethylsiloxane) (PDMS) yield P3HT NW networks embedded in the PDMS matrix. Interestingly, it is found that the vertical distribution of P3HT NWs in the blend films is sensitive to the surface characteristics of the underlying substrate. Compared to the P3HT NWs distributed on a Si substrate with vertical gradation, the P3HT NWs are evenly distributed throughout the PDMS matrix on a PDMS substrate. Organic transistors prepared with the blend active layers with various P3HT ratios exhibit device performances comparable to those of a device prepared with homo‐P3HT NWs, even at 1 wt% P3HT, due to the formation of percolated networks of the P3HT NWs with a high crystallinity and a large aspect ratio. This blend active layer shows the superior electrical and mechanical properties during stretching at high strains unlike the homo‐P3HT NW system.