材料科学
弹性体
纳米线
可伸缩电子设备
基质(水族馆)
图层(电子)
聚合物
有机半导体
半导体
纳米技术
光电子学
复合材料
数码产品
化学
海洋学
物理化学
地质学
作者
Eunjoo Song,Boseok Kang,Hyun Ho Choi,Dong Hun Sin,Hyochan Lee,Wi Hyoung Lee,Kilwon Cho
标识
DOI:10.1002/aelm.201500250
摘要
Despite the considerable efforts applied toward developing stretchable electronics, few intrinsically stretchable semiconductors have been reported that retain the original electrical characteristics under stretching. This study introduces an intrinsically stretchable and transparent organic semiconducting layer by blending self‐assembled nanowires (NWs) of an organic semiconductor with an elastomeric and transparent polymer. Blends of poly(3‐hexylthiophene) (P3HT) NWs and poly(dimethylsiloxane) (PDMS) yield P3HT NW networks embedded in the PDMS matrix. Interestingly, it is found that the vertical distribution of P3HT NWs in the blend films is sensitive to the surface characteristics of the underlying substrate. Compared to the P3HT NWs distributed on a Si substrate with vertical gradation, the P3HT NWs are evenly distributed throughout the PDMS matrix on a PDMS substrate. Organic transistors prepared with the blend active layers with various P3HT ratios exhibit device performances comparable to those of a device prepared with homo‐P3HT NWs, even at 1 wt% P3HT, due to the formation of percolated networks of the P3HT NWs with a high crystallinity and a large aspect ratio. This blend active layer shows the superior electrical and mechanical properties during stretching at high strains unlike the homo‐P3HT NW system.
科研通智能强力驱动
Strongly Powered by AbleSci AI