A Framework for Remote Patient Monitoring to Diagnose the Cardiac Disorders

希尔伯特-黄变换 小波变换 计算机科学 心脏监护 信号(编程语言) 离散余弦变换 离散小波变换 小波 人工智能 信号处理 数据压缩 模式识别(心理学) 算法 数字信号处理 计算机视觉 滤波器(信号处理) 医学 图像(数学) 计算机硬件 内科学 程序设计语言
作者
Goutam Kumar Sahoo
链接
摘要

Electrocardiogram (ECG) is an efficient diagnostic tool to monitor the electrical activity of heart. One of the most vital benefit of using telecommunication technologies in medical field is to provide cardiac health care at a distance. Telecardiology is the most efficient way to provide faster and affordable health care for the cardiac patients located at rural areas. Early detection of cardiac disorders can minimize cardiac death rates. In real time monitoring process, ECG data from a patient usually takes large storage space in the order of gigabytes (GB). Hence, compression of bulky ECG signal is a common requirement for faster transmission of cardiac signals using wireless technologies. Several techniques such as the Fourier transform based methods, wavelet transform based methods, etc., have been reported for compression of ECG data. Though Fourier transform is suitable for analyzing the stationary signals. An improved version, the wavelet transform allows the analysis of non-stationary signal. It provides a uniform resolution for all the scales, however, wavelet transform faces difficulties like uniformly poor resolution due to limited size of the basic wavelet function and it is nonadaptive in nature. A data adaptive method to analyse non-stationary signal is based on empirical mode decomposition (EMD), where the bases are derived from the multivariate data which are nonlinear and non-stationary. A new ECG signal compression technique based on EMD is proposed, in which first EMD technique is applied to decompose the ECG signal into several intrinsic mode functions (IMFs). Next, downsampling, discrete cosine transform (DCT), window filtering and Huffman encoding processes are used sequentially to compress the ECG signal. The compressed ECG is then transmitted as short messageservice (SMS) message using a global system for mobile communications (GSM) modem. First the AT-command ‘+CMGF’ is used to set the SMS to text mode. Next, the GSM modem uses the AT-command ‘+CMGS’ to send a SMS message. The received text SMS messages are transferred to a personal computer (PC) using blue-tooth. All text SMS messages are combined in PC as per the received sequence and fed as data input to decompress the compressed ECG data. The decompression method which is used to reconstruct the original ECG signal consists of Huffman decoding, inverse discrete cosine transform (IDCT) and spline interpolation. The performance of the compression and decompression techniques are evaluated in terms of compression ratio (CR) and percent root mean square difference (PRD) respectively by using both European ST-T database and Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. The average values of CR and PRD for selected ECG records of European ST-T database are found to be 23.5:1 and 1.38 respectively. All 48 ECG records of MIT-BIH arrhythmia database are used for comparison purpose and the average values of CR and PRD are found to be 23.74:1 and 1.49 respectively. The reconstructed ECG signal is then used for detection of cardiac disorders like bradycardia, tachycardia and ischemia. The preprocessing stage of the detection technique filters the normalized signal to reduce noise components and detects the QRS-complexes. Next, ECG feature extraction, ischemic beat classification and ischemic episode detection processes are applied sequentially to the filtered ECG by using rule based medical knowledge. The ST-segment and T-wave are the two features generally used for ischemic beat classification. As per the recommendation of ESC (European Society of cardiology) the ischemic episode detection procedure considers minimum 30s duration of signal. The performance of the ischemic episode detection technique is evaluated in terms of sensitivity (Se) and positive predictive accuracy (PPA) by using European ST-T database. This technique achieves an average Se and PPA of 83.08% and 92.42% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕德地完成签到,获得积分10
6秒前
天真幻珊完成签到 ,获得积分10
8秒前
Eric800824完成签到 ,获得积分10
11秒前
不想长大完成签到 ,获得积分10
12秒前
胖胖橘完成签到 ,获得积分10
20秒前
yxq完成签到 ,获得积分10
25秒前
ruter完成签到,获得积分0
34秒前
ddd完成签到 ,获得积分10
34秒前
梦想去广州当靓仔完成签到 ,获得积分10
40秒前
czj完成签到 ,获得积分10
40秒前
山猫大王完成签到 ,获得积分10
40秒前
J陆lululu完成签到 ,获得积分10
43秒前
文龙完成签到 ,获得积分10
53秒前
可可可126完成签到 ,获得积分10
57秒前
Noah完成签到 ,获得积分10
1分钟前
1分钟前
迈克老狼完成签到 ,获得积分10
1分钟前
科研小虫完成签到,获得积分10
1分钟前
Luckovo完成签到 ,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
可飞完成签到,获得积分10
1分钟前
taipingyang完成签到,获得积分10
2分钟前
BYN完成签到 ,获得积分10
2分钟前
小苔藓完成签到 ,获得积分10
2分钟前
睡觉王完成签到 ,获得积分10
2分钟前
天天赚积分完成签到,获得积分0
2分钟前
yinyin完成签到 ,获得积分10
2分钟前
我爱学习完成签到,获得积分10
2分钟前
xixi很困完成签到 ,获得积分10
2分钟前
shiyi完成签到 ,获得积分10
2分钟前
小超人完成签到 ,获得积分10
2分钟前
刚好夏天完成签到 ,获得积分10
2分钟前
喝酸奶不舔盖完成签到 ,获得积分10
2分钟前
123完成签到 ,获得积分10
3分钟前
znn完成签到 ,获得积分10
3分钟前
CGBY完成签到 ,获得积分10
3分钟前
落叶完成签到 ,获得积分10
3分钟前
花花糖果完成签到 ,获得积分10
3分钟前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
3分钟前
SciGPT应助哭泣的如豹采纳,获得100
3分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139648
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795518
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301543
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176