亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Framework for Remote Patient Monitoring to Diagnose the Cardiac Disorders

希尔伯特-黄变换 小波变换 计算机科学 心脏监护 信号(编程语言) 离散余弦变换 离散小波变换 小波 人工智能 信号处理 数据压缩 模式识别(心理学) 算法 数字信号处理 计算机视觉 滤波器(信号处理) 医学 图像(数学) 计算机硬件 内科学 程序设计语言
作者
Goutam Kumar Sahoo
链接
摘要

Electrocardiogram (ECG) is an efficient diagnostic tool to monitor the electrical activity of heart. One of the most vital benefit of using telecommunication technologies in medical field is to provide cardiac health care at a distance. Telecardiology is the most efficient way to provide faster and affordable health care for the cardiac patients located at rural areas. Early detection of cardiac disorders can minimize cardiac death rates. In real time monitoring process, ECG data from a patient usually takes large storage space in the order of gigabytes (GB). Hence, compression of bulky ECG signal is a common requirement for faster transmission of cardiac signals using wireless technologies. Several techniques such as the Fourier transform based methods, wavelet transform based methods, etc., have been reported for compression of ECG data. Though Fourier transform is suitable for analyzing the stationary signals. An improved version, the wavelet transform allows the analysis of non-stationary signal. It provides a uniform resolution for all the scales, however, wavelet transform faces difficulties like uniformly poor resolution due to limited size of the basic wavelet function and it is nonadaptive in nature. A data adaptive method to analyse non-stationary signal is based on empirical mode decomposition (EMD), where the bases are derived from the multivariate data which are nonlinear and non-stationary. A new ECG signal compression technique based on EMD is proposed, in which first EMD technique is applied to decompose the ECG signal into several intrinsic mode functions (IMFs). Next, downsampling, discrete cosine transform (DCT), window filtering and Huffman encoding processes are used sequentially to compress the ECG signal. The compressed ECG is then transmitted as short messageservice (SMS) message using a global system for mobile communications (GSM) modem. First the AT-command ‘+CMGF’ is used to set the SMS to text mode. Next, the GSM modem uses the AT-command ‘+CMGS’ to send a SMS message. The received text SMS messages are transferred to a personal computer (PC) using blue-tooth. All text SMS messages are combined in PC as per the received sequence and fed as data input to decompress the compressed ECG data. The decompression method which is used to reconstruct the original ECG signal consists of Huffman decoding, inverse discrete cosine transform (IDCT) and spline interpolation. The performance of the compression and decompression techniques are evaluated in terms of compression ratio (CR) and percent root mean square difference (PRD) respectively by using both European ST-T database and Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. The average values of CR and PRD for selected ECG records of European ST-T database are found to be 23.5:1 and 1.38 respectively. All 48 ECG records of MIT-BIH arrhythmia database are used for comparison purpose and the average values of CR and PRD are found to be 23.74:1 and 1.49 respectively. The reconstructed ECG signal is then used for detection of cardiac disorders like bradycardia, tachycardia and ischemia. The preprocessing stage of the detection technique filters the normalized signal to reduce noise components and detects the QRS-complexes. Next, ECG feature extraction, ischemic beat classification and ischemic episode detection processes are applied sequentially to the filtered ECG by using rule based medical knowledge. The ST-segment and T-wave are the two features generally used for ischemic beat classification. As per the recommendation of ESC (European Society of cardiology) the ischemic episode detection procedure considers minimum 30s duration of signal. The performance of the ischemic episode detection technique is evaluated in terms of sensitivity (Se) and positive predictive accuracy (PPA) by using European ST-T database. This technique achieves an average Se and PPA of 83.08% and 92.42% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助七色光采纳,获得10
22秒前
充电宝应助彭蓬采纳,获得10
24秒前
Splaink完成签到 ,获得积分10
26秒前
28秒前
31秒前
科研通AI5应助花骨头采纳,获得10
34秒前
今日完成签到,获得积分10
36秒前
蕊蕊应助奥黛丽悟空采纳,获得10
43秒前
48秒前
酷波er应助科研通管家采纳,获得10
50秒前
111发布了新的文献求助10
54秒前
1分钟前
Owen应助xuan采纳,获得30
1分钟前
七色光发布了新的文献求助10
1分钟前
科研通AI5应助杭州007采纳,获得30
1分钟前
1分钟前
科研通AI5应助111采纳,获得10
1分钟前
杭州007完成签到,获得积分10
1分钟前
volcano发布了新的文献求助10
1分钟前
九月亦星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xuan发布了新的文献求助30
1分钟前
杭州007发布了新的文献求助30
1分钟前
1分钟前
1分钟前
完美世界应助展锋采纳,获得10
1分钟前
蟹治猿完成签到 ,获得积分10
1分钟前
月满西楼完成签到,获得积分10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
2分钟前
展锋发布了新的文献求助10
2分钟前
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
可爱的函函应助pkaff采纳,获得10
2分钟前
weniii发布了新的文献求助10
2分钟前
pkaff完成签到,获得积分20
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918