过度拟合
初始化
计算机科学
整流器(神经网络)
人工智能
刮擦
人工神经网络
上下文图像分类
参数统计
深层神经网络
机器学习
深度学习
模式识别(心理学)
图像(数学)
卷积神经网络
循环神经网络
数学
人工神经网络的类型
操作系统
统计
程序设计语言
作者
Kaiming He,Xiangyu Zhang,Shaoqing Ren,Jian Sun
出处
期刊:International Conference on Computer Vision
日期:2015-12-01
被引量:14716
标识
DOI:10.1109/iccv.2015.123
摘要
Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on the learnable activation and advanced initialization, we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To our knowledge, our result is the first to surpass the reported human-level performance (5.1%, [26]) on this dataset.
科研通智能强力驱动
Strongly Powered by AbleSci AI