Facile and Rapid Generation of Large-Scale Microcollagen Gel Array for Long-Term Single-Cell 3D Culture and Cell Proliferation Heterogeneity Analysis

细胞培养 细胞生长 三维细胞培养 单细胞分析 细胞 化学 细胞生物学 纳米技术 生物物理学 生物 材料科学 生物化学 遗传学
作者
Zhichao Guan,Shasha Jia,Zhi Zhu,Mingxia Zhang,Chaoyong Yang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:86 (5): 2789-2797 被引量:42
标识
DOI:10.1021/ac500088m
摘要

Microfabricated devices are suitable for single-cell analysis due to their high throughput, compatible dimensions and controllable microenvironment. However, existing devices for single-cell culture and analysis encounter some limitations, such as nutrient depletion, random cell migration and complicated fluid shear influence. Moreover, most of the single-cell culture and analysis devices are based on 2D cell culture conditions, even though 3D cell culture methods have been demonstrated to better mimic the real cell microenvironment in vivo. To solve these problems, herein we develop a microcollagen gel array (μCGA) based approach for high-throughput long-term single-cell culture and single-cell analysis under 3D culture conditions. Type-I collagen, a well-established 3D cell culture medium, was used as the scaffold for 3D cell growth. A 2 × 2 cm PDMS chip with 10 000 μCGA units was fabricated to encapsulate thousands of single cells in less than 15 min. Single cells were able to be confined and survive in μCGA units for more than 1 month. The capability of large-scale and long-term single-cell 3D culture under open culture conditions allows us to study cellular proliferation heterogeneity and drug cytotoxicity at the single-cell level. Compared with existing devices for single-cell analysis, μCGA solves the problems of nutrient depletion and random cellular migration, avoids the influence of complicated fluid shear, and mimics the real 3D growth environment in vivo, thereby providing a feasible 3D long-term single-cell culture method for single-cell analysis and drug screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逗乐完成签到,获得积分10
刚刚
安静应助DE2022采纳,获得10
刚刚
从容凌萱发布了新的文献求助10
2秒前
2秒前
眼睛大的惜萱完成签到,获得积分20
2秒前
崔晗发布了新的文献求助10
3秒前
3秒前
4秒前
666完成签到,获得积分10
4秒前
4秒前
cocolu应助小卡拉米采纳,获得10
4秒前
逗乐发布了新的文献求助10
5秒前
12发布了新的文献求助10
6秒前
田様应助末晶采纳,获得10
7秒前
7秒前
7秒前
kytm完成签到,获得积分20
7秒前
7秒前
8秒前
科研通AI2S应助曾泓跃采纳,获得10
8秒前
9秒前
9秒前
Xixi_yuan发布了新的文献求助10
9秒前
9秒前
666发布了新的文献求助10
10秒前
10秒前
树枝完成签到,获得积分10
11秒前
11秒前
11秒前
DE2022发布了新的文献求助10
12秒前
玄武岩发布了新的文献求助10
13秒前
yue发布了新的文献求助30
13秒前
小蘑菇应助冷酷的尔云采纳,获得10
13秒前
轻松的小白菜完成签到,获得积分10
13秒前
zzjj发布了新的文献求助10
14秒前
SHXSJN发布了新的文献求助10
14秒前
老刘发布了新的文献求助10
14秒前
qly应助李圳铭采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444222
求助须知:如何正确求助?哪些是违规求助? 3040268
关于积分的说明 8980686
捐赠科研通 2728913
什么是DOI,文献DOI怎么找? 1496761
科研通“疑难数据库(出版商)”最低求助积分说明 691858
邀请新用户注册赠送积分活动 689393