Facile and Rapid Generation of Large-Scale Microcollagen Gel Array for Long-Term Single-Cell 3D Culture and Cell Proliferation Heterogeneity Analysis

细胞培养 细胞生长 三维细胞培养 单细胞分析 细胞 化学 细胞生物学 纳米技术 生物物理学 生物 材料科学 生物化学 遗传学
作者
Zhichao Guan,Shasha Jia,Zhi Zhu,Mingxia Zhang,Chaoyong Yang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:86 (5): 2789-2797 被引量:42
标识
DOI:10.1021/ac500088m
摘要

Microfabricated devices are suitable for single-cell analysis due to their high throughput, compatible dimensions and controllable microenvironment. However, existing devices for single-cell culture and analysis encounter some limitations, such as nutrient depletion, random cell migration and complicated fluid shear influence. Moreover, most of the single-cell culture and analysis devices are based on 2D cell culture conditions, even though 3D cell culture methods have been demonstrated to better mimic the real cell microenvironment in vivo. To solve these problems, herein we develop a microcollagen gel array (μCGA) based approach for high-throughput long-term single-cell culture and single-cell analysis under 3D culture conditions. Type-I collagen, a well-established 3D cell culture medium, was used as the scaffold for 3D cell growth. A 2 × 2 cm PDMS chip with 10 000 μCGA units was fabricated to encapsulate thousands of single cells in less than 15 min. Single cells were able to be confined and survive in μCGA units for more than 1 month. The capability of large-scale and long-term single-cell 3D culture under open culture conditions allows us to study cellular proliferation heterogeneity and drug cytotoxicity at the single-cell level. Compared with existing devices for single-cell analysis, μCGA solves the problems of nutrient depletion and random cellular migration, avoids the influence of complicated fluid shear, and mimics the real 3D growth environment in vivo, thereby providing a feasible 3D long-term single-cell culture method for single-cell analysis and drug screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当时只道是寻常完成签到,获得积分10
刚刚
北风完成签到,获得积分10
刚刚
李健应助温暖的定格采纳,获得10
刚刚
1秒前
酷波er应助义气代梅采纳,获得10
1秒前
1秒前
李健应助顺顺采纳,获得10
1秒前
开心的大娘完成签到,获得积分10
1秒前
牛牛完成签到,获得积分10
2秒前
下载文章即可完成签到,获得积分10
2秒前
秋海棠完成签到,获得积分10
2秒前
yifan92完成签到,获得积分10
3秒前
liam完成签到,获得积分10
4秒前
haliw完成签到,获得积分10
4秒前
志豪发布了新的文献求助10
4秒前
关山完成签到,获得积分10
4秒前
5秒前
牛不可完成签到,获得积分10
5秒前
13633501455完成签到,获得积分10
5秒前
wsg完成签到,获得积分10
5秒前
奥斯卡发布了新的文献求助10
6秒前
whisper完成签到,获得积分10
6秒前
勤奋帅帅完成签到,获得积分10
7秒前
paopao发布了新的文献求助10
8秒前
panpan完成签到 ,获得积分10
8秒前
李L完成签到,获得积分10
8秒前
迅速思萱完成签到,获得积分10
8秒前
sunny心晴完成签到 ,获得积分10
8秒前
9秒前
春锅锅完成签到,获得积分10
9秒前
9秒前
9秒前
三三四完成签到,获得积分10
11秒前
研友_LN7x6n完成签到,获得积分10
11秒前
popo完成签到,获得积分10
11秒前
11秒前
小林太郎应助Wendygogogo采纳,获得30
12秒前
天天快乐应助tesla采纳,获得10
12秒前
三三完成签到,获得积分10
12秒前
早早发论文完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556011
求助须知:如何正确求助?哪些是违规求助? 3131566
关于积分的说明 9392042
捐赠科研通 2831431
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715910