Abstract The electrooxidation of phenol is of interest as a model compound for the treatment of aqueous organic wastes. The effect of voltage, concentration and temperature on the electrochemical oxidation of acidic dilute aqueous solutions of phenol was studied. Electrolysis was carried out by recirculating phenol solutions through a flow‐by electrochemical reactor employing a reticulated glassy carbon anode. Concentrations of phenol and some breakdown products were monitored using HPLC analysis. Increased voltage was found to shift the product distribution to favour more oxidized products but also to increase electrode corrosion and decrease current efficiency. Higher phenol concentrations (over the range of 5‐20 mmol/L) showed a shift in product distribution to favour less oxidized, mostly insoluble products. Elevated temperatures (about 50°C and higher) showed a marked ability to reduce electrode passivation and increase the phenol oxidation rate.